173 research outputs found
The Impact of New EUV Diagnostics on CME-Related Kinematics
We present the application of novel diagnostics to the spectroscopic
observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet
Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently
developed line profile asymmetry analysis to the spectroscopic observation of
NOAA AR 10930 on 14-15 December 2006 to three raster observations before and
during the eruption of a 1000km/s CME. We see the impact that the observer's
line-of-sight and magnetic field geometry have on the diagnostics used.
Further, and more importantly, we identify the on-disk signature of a
high-speed outflow behind the CME in the dimming region arising as a result of
the eruption. Supported by recent coronal observations of the STEREO
spacecraft, we speculate about the momentum flux resulting from this outflow as
a secondary momentum source to the CME. The results presented highlight the
importance of spectroscopic measurements in relation to CME kinematics, and the
need for full-disk synoptic spectroscopic observations of the coronal and
chromospheric plasmas to capture the signature of such explosive energy release
as a way of providing better constraints of CME propagation times to L1, or any
other point of interest in the heliosphere.Comment: Accepted to appear in Solar Physics Topical Issue titled "Remote
Sensing of the Inner Heliosphere". Manuscript has 14 pages, 5 color figures.
Movies supporting the figures can be found in
http://download.hao.ucar.edu/pub/mscott/papers/Weathe
Deterministically Driven Avalanche Models of Solar Flares
We develop and discuss the properties of a new class of lattice-based
avalanche models of solar flares. These models are readily amenable to a
relatively unambiguous physical interpretation in terms of slow twisting of a
coronal loop. They share similarities with other avalanche models, such as the
classical stick--slip self-organized critical model of earthquakes, in that
they are driven globally by a fully deterministic energy loading process. The
model design leads to a systematic deficit of small scale avalanches. In some
portions of model space, mid-size and large avalanching behavior is scale-free,
being characterized by event size distributions that have the form of
power-laws with index values, which, in some parameter regimes, compare
favorably to those inferred from solar EUV and X-ray flare data. For models
using conservative or near-conservative redistribution rules, a population of
large, quasiperiodic avalanches can also appear. Although without direct
counterparts in the observational global statistics of flare energy release,
this latter behavior may be relevant to recurrent flaring in individual coronal
loops. This class of models could provide a basis for the prediction of large
solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar
Physic
New Black Hole Solutions in Brans-Dicke Theory of Gravity
Existence check of non-trivial, stationary axisymmetric black hole solutions
in Brans-Dicke theory of gravity in different direction from those of Penrose,
Thorne and Dykla, and Hawking is performed. Namely, working directly with the
known explicit spacetime solutions in Brans-Dicke theory, it is found that
non-trivial Kerr-Newman-type black hole solutions different from general
relativistic solutions could occur for the generic Brans-Dicke parameter values
-5/2\leq \omega <-3/2. Finally, issues like whether these new black holes carry
scalar hair and can really arise in nature and if they can, what the associated
physical implications would be are discussed carefully.Comment: 20 pages, no figure, Revtex, version to appear in Phys. Rev.
On the magnetic and energy characteristics of recurrent homologous jets from an emerging flux
In this paper, we present the detailed analysis of recurrent homologous jets originating from an emerging negative magnetic flux at the edge of an Active Region. The observed jets show multi-thermal features. Their evolution shows high consistence with the characteristic parameters of the emerging flux, suggesting that with more free magnetic energy, the eruptions tend to be more violent, frequent and blowout-like. The average temperature, average electron number density and axial speed are found to be similar for different jets, indicating that they should have been formed by plasmas from similar origins. Statistical analysis of the jets and their footpoint region conditions reveals a strong positive relationship between the footpoint-region total 131 {\AA} intensity enhancement and jets' length/width. Stronger linearly positive relationships also exist between the total intensity enhancement/thermal energy of the footpoint regions and jets' mass/kinetic/thermal energy, with higher cross-correlation coefficients. All the above results, together, confirm the direct relationship between the magnetic reconnection and the jets, and validate the important role of magnetic reconnection in transporting large amount of free magnetic energy into jets. It is also suggested that there should be more free energy released during the magnetic reconnection of blowout than of standard jet events
Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter
The Coronal Multichannel Polarimeter (CoMP) measures not only the
polarization of coronal emission, but also the full radiance profiles of
coronal emission lines. For the first time, CoMP observations provide
high-cadence image sequences of the coronal line intensity, Doppler shift and
line width simultaneously in a large field of view. By studying the Doppler
shift and line width we may explore more of the physical processes of CME
initiation and propagation. Here we identify a list of CMEs observed by CoMP
and present the first results of these observations. Our preliminary analysis
shows that CMEs are usually associated with greatly increased Doppler shift and
enhanced line width. These new observations provide not only valuable
information to constrain CME models and probe various processes during the
initial propagation of CMEs in the low corona, but also offer a possible
cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism,
Sol. Phy
Rotating metrics admitting non-perfect fluids in General Relativity
In this paper, by applying Newman-Janis algorithm in spherical symmetric
metrics, a class of embedded rotating solutions of field equations is
presented. These solutions admit non-perfect fluidsComment: LaTex, 39 page
Numerical Simulations of Magnetoacoustic-Gravity Waves in the Solar Atmosphere
We investigate the excitation of magnetoacoustic-gravity waves generated from
localized pulses in the gas pressure as well as in vertical component of
velocity. These pulses are initially launched at the top of the solar
photosphere that is permeated by a weak magnetic field. We investigate three
different configurations of the background magnetic field lines: horizontal,
vertical and oblique to the gravitational force. We numerically model
magnetoacoustic-gravity waves by implementing a realistic (VAL-C) model of
solar temperature. We solve two-dimensional ideal magnetohydrodynamic equations
numerically with the use of the FLASH code to simulate the dynamics of the
lower solar atmosphere. The initial pulses result in shocks at higher
altitudes. Our numerical simulations reveal that a small-amplitude initial
pulse can produce magnetoacoustic-gravity waves, which are later reflected from
the transition region due to the large temperature gradient. The atmospheric
cavities in the lower solar atmosphere are found to be the ideal places that
may act as a resonator for various oscillations, including their trapping and
leakage into the higher atmosphere. Our numerical simulations successfully
model the excitation of such wave modes, their reflection and trapping, as well
as the associated plasma dynamics
Alfv\'en Reflection and Reverberation in the Solar Atmosphere
Magneto-atmospheres with Alfv\'en speed [a] that increases monotonically with
height are often used to model the solar atmosphere, at least out to several
solar radii. A common example involves uniform vertical or inclined magnetic
field in an isothermal atmosphere, for which the Alfv\'en speed is exponential.
We address the issue of internal reflection in such atmospheres, both for
time-harmonic and for transient waves. It is found that a mathematical boundary
condition may be devised that corresponds to perfect absorption at infinity,
and, using this, that many atmospheres where a(x) is analytic and unbounded
present no internal reflection of harmonic Alfv\'en waves. However, except for
certain special cases, such solutions are accompanied by a wake, which may be
thought of as a kind of reflection. For the initial-value problem where a
harmonic source is suddenly switched on (and optionally off), there is also an
associated transient that normally decays with time as O(t-1) or O(t-1 ln t),
depending on the phase of the driver. Unlike the steady-state harmonic
solutions, the transient does reflect weakly. Alfv\'en waves in the solar
corona driven by a finite-duration train of p-modes are expected to leave such
transients.Comment: Accepted by Solar Physic
Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere
We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line
and G-band image sequences and their relation to simultaneous and co-spatial
magnetic field measurements. We explore the G-band and H-line intensity
oscillation spectra both separately and comparatively via their relative phase
differences, time delays and cross-coherences. In the non-magnetic situations,
both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band
centered at 4.5 mHz, but this is suppressed as magnetic field increases. A
relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s
in non-magnetic situations implying a mean effective height difference of 140
km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the
measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A
second coherence maximum appears between 7.5 - 10 mHz. Investigation of the
locations of this doubled-frequency coherence locates it in diffuse rings
outside photospheric magnetic structures. Some possible interpretations of
these results are offered.Comment: 19 pages, 6 figure
Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms
This paper describes a new 2D model for the photospheric evolution of the
magnetic carpet. It is the first in a series of papers working towards
constructing a realistic 3D non-potential model for the interaction of
small-scale solar magnetic fields. In the model, the basic evolution of the
magnetic elements is governed by a supergranular flow profile. In addition,
magnetic elements may evolve through the processes of emergence, cancellation,
coalescence and fragmentation. Model parameters for the emergence of bipoles
are based upon the results of observational studies. Using this model, several
simulations are considered, where the range of flux with which bipoles may
emerge is varied. In all cases the model quickly reaches a steady state where
the rates of emergence and cancellation balance. Analysis of the resulting
magnetic field shows that we reproduce observed quantities such as the flux
distribution, mean field, cancellation rates, photospheric recycle time and a
magnetic network. As expected, the simulation matches observations more closely
when a larger, and consequently more realistic, range of emerging flux values
is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed
properties of the magnetic carpet when we take the minimum absolute flux for
emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an
evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at
http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1
- …
