11 research outputs found

    Intra Plate Stresses Using Finite Element Modelling

    Get PDF

    Finite element models to represent seismic activity of the Indian plate

    Get PDF
    AbstractQuantification of seismic activity is one of the most challenging problems faced by earthquake engineers in probabilistic seismic hazard analysis. Currently, this problem has been attempted using empirical approaches which are based on the regional earthquake recurrence relations from the available earthquake catalogue. However, at a specified site of engineering interest, these empirical models are associated with large number of uncertainties due to lack of sufficient data. Due to these uncertainties, engineers need to develop mechanistic models to quantify seismic activity. A wide range of techniques for modeling continental plates provides useful insights on the mechanics of plates and their seismic activity. Among the different continental plates, the Indian plate experiences diffused seismicity. In India, although Himalaya is regarded as a plate boundary and active region, the seismicity database indicates that there are other regions in the Indian shield reporting sporadic seismic activity. It is expected that mechanistic models of Indian plate, based on finite element method, simulate stress fields that quantify the seismic potential of active regions in India. This article explores the development of a finite element model for Indian plate by observing the simulated stress field for various boundary conditions, geological and rheological conditions. The study observes that the magnitude and direction of stresses in the plate is sensitive to these conditions. The numerical analysis of the models shows that the simulated stress field represents the active seismic zones in India

    A stochastic model for earthquake slip distribution of large events

    No full text
    This paper presents a stochastic model to simulate spatial distribution of slip on the rupture plane for large earthquakes (Mw >7). A total of 45 slip models coming from the past 33 large events are examined to develop the model. The model has been developed in two stages. In the first stage, effective rupture dimensions are derived from the data. Empirical relations to predict the rupture dimensions, mean and standard deviation of the slip, the size of asperities and their location from the hypocentre from the seismic moment are developed. In the second stage, the slip is modelled as a homogeneous random field. Important properties of the slip field such as correlation length have been estimated for the slip models. The developed model can be used to simulate ground motion for large events

    An engineering model for seismicity of India

    No full text
    This article explores an engineering approach to model the seismic activity in India. Finite element analysis is carried out to estimate the stresses and displacements in the Indian plate. Assuming the Himalayan boundary as fixed, the plate-driving forces are modelled as axial forces applied at the mid-oceanic ridge between the Indian and African plates. The effect of Aravali, Dharwar and Bundelkhand cratons on the stress patterns in the plate is also studied. The obtained results are validated to the extent possible with the available recorded seismicity data and measurements from Global Positioning System (GPS)

    A Stochastic source model for the 2015 Mw 7.9 Gorkha, Nepal, Earthquake using Multi-Dimensional Ensemble Empirical Mode Decomposition technique

    No full text
    The present study aims at developing a new strategy to model the spatial variability of slip on the rupture plane using multi-dimensional ensemble empirical mode decomposition (MEEMD) technique. Here, the earthquake slip distribution is split into finite number of empirical modes of oscillation called the intrinsic mode functions (IMFs). This help in identifying the fluctuation component and trend in the slip data. The trend is positive and characterizes the nonstationary mean of the slip distribution. The fluctuation component can be modelled as a stationary random field using an exponential power spectral density function. The trend can be modeled as an elliptic patch. This new technique is demonstrated for the slip distribution of the recent Nepal Earthquake, 2015. It is observed that the new model can be used to simulate the spatial complexity of slip distribution of any earthquake

    A Stochastic source model for the 2015 Mw 7.9 Gorkha, Nepal, Earthquake using Multi-Dimensional Ensemble Empirical Mode Decomposition technique

    No full text
    The present study aims at developing a new strategy to model the spatial variability of slip on the rupture plane using multi-dimensional ensemble empirical mode decomposition (MEEMD) technique. Here, the earthquake slip distribution is split into finite number of empirical modes of oscillation called the intrinsic mode functions (IMFs). This help in identifying the fluctuation component and trend in the slip data. The trend is positive and characterizes the nonstationary mean of the slip distribution. The fluctuation component can be modelled as a stationary random field using an exponential power spectral density function. The trend can be modeled as an elliptic patch. This new technique is demonstrated for the slip distribution of the recent Nepal Earthquake, 2015. It is observed that the new model can be used to simulate the spatial complexity of slip distribution of any earthquake

    Neural Network-Based Subduction Ground Motion Model and Its Application to New Zealand and the Andaman and Nicobar Islands

    No full text
    A deep learning model is developed for the Next Generation Attenuation – Subduction database for predicting spectral accelerations and peak amplitude measures. The developed model satisfies the statistical criteria necessary for prediction. Standard deviations lie in 0.2864–0.3809, 0–0.2696, and 0.4514–0.7892, range for inter-event, -region, and intra-events, respectively. Transfer learning is applied to the New Zealand region. Probabilistic seismic hazard analysis is performed for the Andaman-Nicobar region and obtained a peak ground acceleration of 0.6–0.7 g and 0.4–0.5 g at the Andaman and the Nicobar Islands, respectively, for a 2475-year return period.</p
    corecore