55 research outputs found

    Critical properties of loop percolation models with optimization constraints

    Full text link
    We study loop percolation models in two and in three space dimensions, in which configurations of occupied bonds are forced to form closed loop. We show that the uncorrelated occupation of elementary plaquettes of the square and the simple cubic lattice by elementary loops leads to a percolation transition that is in the same universality class as the conventional bond percolation. In contrast to this an optimization constraint for the loop configurations, which then have to minimize a particular generic energy function, leads to a percolation transition that constitutes a new universality class, for which we report the critical exponents. Implication for the physics of solid-on-solid and vortex glass models are discussed.Comment: 8 pages, 8 figure

    Spin magnetization of strongly correlated electron gas confined in a two-dimensional finite lattice

    Full text link
    The influence of disorder and interaction on the ground state polarization of the two-dimensional (2D) correlated electron gas is studied by numerical investigations of unrestricted Hartree-Fock equations. The ferromagnetic ground state is found to be plausible when the electron number is lowered and the interaction and disorder parameters are suitably chosen. For a finite system at constant electronic density the disorder induced spin polarization is cut off when the electron orbitals become strongly localized to the individual network sites. The fluctuations of the interaction matrix elements are calculated and brought out as favoring the ferromagnetic instability in the extended and weak localization regime. The localization effect of the Hubbard interaction term is discussed.Comment: 7 pages, 9 figure

    Dynamic renormalization group study of a generalized continuum model of crystalline surfaces

    Get PDF
    We apply the Nozieres-Gallet dynamic renormalization group (RG) scheme to a continuum equilibrium model of a d-dimensional surface relaxing by linear surface tension and linear surface diffusion, and which is subject to a lattice potential favoring discrete values of the height variable. The model thus interpolates between the overdamped sine-Gordon model and a related continuum model of crystalline tensionless surfaces. The RG flow predicts the existence of an equilibrium roughening transition only for d = 2 dimensional surfaces, between a flat low-temperature phase and a rough high-temperature phase in the Edwards-Wilkinson (EW) universality class. The surface is always in the flat phase for any other substrate dimensions d > 2. For any value of d, the linear surface diffusion mechanism is an irrelevant perturbation of the linear surface tension mechanism, but may induce long crossovers within which the scaling properties of the linear molecular-beam epitaxy equation are observed, thus increasing the value of the sine-Gordon roughening temperature. This phenomenon originates in the non-linear lattice potential, and is seen to occur even in the absence of a bare surface tension term. An important consequence of this is that a crystalline tensionless surface is asymptotically described at high temperatures by the EW universality class.Comment: 22 pages, 5 figures. Accepted for publication in Physical Review

    Two-Dimensional Wigner Crystal in Anisotropic Semiconductor

    Full text link
    We investigate the effect of mass anisotropy on the Wigner crystallization transition in a two-dimensional (2D) electron gas. The static and dynamical properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais lattices in the presence of anisotropic mass, as may be obtainable in Si MOSFETs with (110) surface. By studying the stability of all possible lattices, we find significant change in the crystal structure and melting density of the electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure

    On The Mobile Behavior of Solid 4^4He at High Temperatures

    Full text link
    We report studies of solid helium contained inside a torsional oscillator, at temperatures between 1.07K and 1.87K. We grew single crystals inside the oscillator using commercially pure 4^4He and 3^3He-4^4He mixtures containing 100 ppm 3^3He. Crystals were grown at constant temperature and pressure on the melting curve. At the end of the growth, the crystals were disordered, following which they partially decoupled from the oscillator. The fraction of the decoupled He mass was temperature and velocity dependent. Around 1K, the decoupled mass fraction for crystals grown from the mixture reached a limiting value of around 35%. In the case of crystals grown using commercially pure 4^4He at temperatures below 1.3K, this fraction was much smaller. This difference could possibly be associated with the roughening transition at the solid-liquid interface.Comment: 15 pages, 6 figure

    Universality in the Screening Cloud of Dislocations Surrounding a Disclination

    Full text link
    A detailed analytical and numerical analysis for the dislocation cloud surrounding a disclination is presented. The analytical results show that the combined system behaves as a single disclination with an effective fractional charge which can be computed from the properties of the grain boundaries forming the dislocation cloud. Expressions are also given when the crystal is subjected to an external two-dimensional pressure. The analytical results are generalized to a scaling form for the energy which up to core energies is given by the Young modulus of the crystal times a universal function. The accuracy of the universality hypothesis is numerically checked to high accuracy. The numerical approach, based on a generalization from previous work by S. Seung and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own and allows to compute the energy for an {\em arbitrary} distribution of defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy} with very minor additional computational effort. Some implications for recent experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file

    Dynamically turning off interactions in a two component condensate

    Full text link
    We propose a mechanism to change the interaction strengths of a two component condensate. It is shown that the application of pi/2 pulses allows to alter the effective interspecies interaction strength as well as the effective interaction strength between particles of the same kind. This mechanism provides a simple method to transform spatially stable condensates into unstable once and vice versa. It also provides a means to store a squeezed spin state by turning off the interaction for the internal states and thus allows to gain control over many body entangled states.Comment: 7 pages 5 figures, symbols changed, minor changes, to appear in Phys. Rev.

    Velocity-force characteristics of an interface driven through a periodic potential

    Full text link
    We study the creep dynamics of a two-dimensional interface driven through a periodic potential using dynamical renormalization group methods. We find that the nature of weak-drive transport depends qualitatively on whether the temperature TT is above or below the equilibrium roughening transition temperature TcT_c. Above TcT_c, the velocity-force characteristics is Ohmic, with linear mobility exhibiting a jump discontinuity across the transition. For TTcT \le T_c, the transport is highly nonlinear, exhibiting an interesting crossover in temperature and weak external force FF. For intermediate drive, F>FF>F_*, we find near TcT_c^{-} a power-law velocity-force characteristics v(F)Fσv(F)\sim F^\sigma, with σ1t~\sigma-1\propto \tilde{t}, and well-below TcT_c, v(F)e(F/F)2t~v(F)\sim e^{-(F_*/F)^{2\tilde{t}}}, with t~=(1T/Tc)\tilde{t}=(1-T/T_c). In the limit of vanishing drive (FFF\ll F_*) the velocity-force characteristics crosses over to v(F)e(F0/F)v(F)\sim e^{-(F_0/F)}, and is controlled by soliton nucleation.Comment: 18 pages, submitted to Phys. Rev.
    corecore