1,461 research outputs found

    Gauge Theory Correlators from Non-Critical String Theory

    Get PDF
    We suggest a means of obtaining certain Green's functions in 3+1-dimensional N=4{\cal N} = 4 supersymmetric Yang-Mills theory with a large number of colors via non-critical string theory. The non-critical string theory is related to critical string theory in anti-deSitter background. We introduce a boundary of the anti-deSitter space analogous to a cut-off on the Liouville coordinate of the two-dimensional string theory. Correlation functions of operators in the gauge theory are related to the dependence of the supergravity action on the boundary conditions. From the quadratic terms in supergravity we read off the anomalous dimensions. For operators that couple to massless string states it has been established through absorption calculations that the anomalous dimensions vanish, and we rederive this result. The operators that couple to massive string states at level nn acquire anomalous dimensions that grow as 2\left (n g_{YM} \sqrt {2 N} )^{1/2} for large `t Hooft coupling. This is a new prediction about the strong coupling behavior of large NN SYM theory.Comment: 15 pages, harvmac with btxmac; minor revisions, 1 reference added, the version to appear in Physics Letters

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    The Effects of Thrombus, Thrombectomy and Thrombolysis on Endothelial Function

    Get PDF
    AbstractObjective: this study was undertaken to examine and compare the effects of thrombus, thrombectomy, and thrombolysis on endothelial function as measured by endothelium-dependent vasorelaxation (EDR). Methods: adult, male New Zealand white rabbits underwent ligation of the left common iliac to femoral artery to induce thrombosis and were then randomly assigned to one of five groups, n=6 in each. Group A consisted of ligation and thrombosis for 4 h. Group B underwent similar ligation for 4 h, but without intraluminal thrombus present. Following 4 h of ligation and thrombosis, Group C underwent thrombectomy while group D was treated with urokinase (UK), 4000 U/min for 30 min. Group E underwent UK infusion alone. The right external iliac artery served as control vessel in each group. All arteries were removed and endothelial function was determined by measuring EDR. Results: the presence of thrombus reduced EDR by 50% (group A) compared to control. Vessels with interrupted flow, but not exposed to thrombus, retained normal EDR (group B). Thrombectomy decreased EDR significantly (group C) compared to thrombolysis (group D) and control. UK did not significantly alter EDR (groups D, E).Conclusions: exposure of endothelium to thrombus significantly decreases EDR. EDR was not affected by interruption of blood flow in the absence of thrombus. Thrombectomy appeared to cause a further additive insult to the endothelium. In contrast, thrombolysis with UK preserved residual endothelial function. These data suggest that it is important to differentiate the effects of thrombus on endothelium from effects due to thrombectomy or thrombolysis when evaluating treatment modalities for arterial thrombosis

    Stirring Strongly Coupled Plasma

    Full text link
    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implications of our results for a quark that is moving through the plasma in a straight line while decelerating, although in this case the classical calculation breaks down at the same value of the deceleration at which the radiation-dominated regime sets in.Comment: 27 pages LaTex, 5 figure

    A lower limit on the dark particle mass from dSphs

    Full text link
    We use dwarf spheroidal galaxies as a tool to attempt to put precise lower limits on the mass of the dark matter particle, assuming it is a sterile neutrino. We begin by making cored dark halo fits to the line of sight velocity dispersions as a function of projected radius (taken from Walker et al. 2007) for six of the Milky Way's dwarf spheroidal galaxies. We test Osipkov-Merritt velocity anisotropy profiles, but find that no benefit is gained over constant velocity anisotropy. In contrast to previous attempts, we do not assume any relation between the stellar velocity dispersions and the dark matter ones, but instead we solve directly for the sterile neutrino velocity dispersion at all radii by using the equation of state for a partially degenerate neutrino gas (which ensures hydrostatic equilibrium of the sterile neutrino halo). This yields a 1:1 relation between the sterile neutrino density and velocity dispersion, and therefore gives us an accurate estimate of the Tremaine-Gunn limit at all radii. By varying the sterile neutrino particle mass, we locate the minimum mass for all six dwarf spheroidals such that the Tremaine-Gunn limit is not exceeded at any radius (in particular at the centre). We find sizeable differences between the ranges of feasible sterile neutrino particle mass for each dwarf, but interestingly there exists a small range 270-280eV which is consistent with all dSphs at the 1-σ\sigma level.Comment: 13 pages, 2 figures, 1 tabl

    Energy Loss of Heavy Quarks from Asymptotically AdS Geometries

    Get PDF
    We investigate some universal features of AdS/CFT models of heavy quark energy loss. In addition, as a specific example, we examine quark damping in the spinning D3-brane solution dual to N=4 SU(N_c) super Yang-Mills at finite temperature and R-charge chemical potential.Comment: 17 pages, 9 figures; v2 refs added, typo fixe

    Reconciling MOND and dark matter?

    Full text link
    Observations of galaxies suggest a one-to-one analytic relation between the inferred gravity of dark matter at any radius and the enclosed baryonic mass, a relation summarized by Milgrom's law of modified Newtonian dynamics (MOND). However, present-day covariant versions of MOND usually require some additional fields contributing to the geometry, as well as an additional hot dark matter component to explain cluster dynamics and cosmology. Here, we envisage a slightly more mundane explanation, suggesting that dark matter does exist but is the source of MOND-like phenomenology in galaxies. We assume a canonical action for dark matter, but also add an interaction term between baryonic matter, gravity, and dark matter, such that standard matter effectively obeys the MOND field equation in galaxies. We show that even the simplest realization of the framework leads to a model which reproduces some phenomenological predictions of cold dark matter (CDM) and MOND at those scales where these are most successful. We also devise a more general form of the interaction term, introducing the medium density as a new order parameter. This allows for new physical effects which should be amenable to observational tests in the near future. Hence, this very general framework, which can be furthermore related to a generalized scalar-tensor theory, opens the way to a possible unification of the successes of CDM and MOND at different scales.Comment: 9 page

    Radiative and Collisional Energy Loss, and Photon-Tagged Jets at RHIC

    Full text link
    The suppression of single jets at high transverse momenta in a quark-gluon plasma is studied at RHIC energies, and the additional information provided by a photon tag is included. The energy loss of hard jets traversing through the medium is evaluated in the AMY formalism, by consistently taking into account the contributions from radiative events and from elastic collisions at leading order in the coupling. The strongly-interacting medium in these collisions is modelled with (3+1)-dimensional ideal relativistic hydrodynamics. Putting these ingredients together with a complete set of photon-production processes, we present a calculation of the nuclear modification of single jets and photon-tagged jets at RHIC.Comment: 4 pages, 4 figures, contributed to the 3rd International Conference on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), typos corrected, published versio
    • 

    corecore