128 research outputs found
Cortical miR-709 links glutamatergic signaling to NREM sleep EEG slow waves in an activity-dependent manner.
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling
Optical excitations in a one-dimensional Mott insulator
The density-matrix renormalization-group (DMRG) method is used to investigate
optical excitations in the Mott insulating phase of a one-dimensional extended
Hubbard model. The linear optical conductivity is calculated using the
dynamical DMRG method and the nature of the lowest optically excited states is
investigated using a symmetrized DMRG approach. The numerical calculations
agree perfectly with field-theoretical predictions for a small Mott gap and
analytical results for a large Mott gap obtained with a strong-coupling
analysis. Is is shown that four types of optical excitations exist in this Mott
insulator: pairs of unbound charge excitations, excitons, excitonic strings,
and charge-density-wave (CDW) droplets. Each type of excitations dominates the
low-energy optical spectrum in some region of the interaction parameter space
and corresponds to distinct spectral features: a continuum starting at the Mott
gap (unbound charge excitations), a single peak or several isolated peaks below
the Mott gap (excitons and excitonic strings, respectively), and a continuum
below the Mott gap (CDW droplets).Comment: 12 pages (REVTEX 4), 12 figures (in 14 eps files), 1 tabl
Dynamical Symmetry Breaking in Spaces with Constant Negative Curvature
By using the Nambu-Jona-Lasinio model, we study dynamical symmetry breaking
in spaces with constant negative curvature. We show that the physical reason
for zero value of critical coupling value in these spaces is
connected with the effective reduction of dimension of spacetime in the infrared region, which takes place for any dimension . Since
the Laplace-Beltrami operator has a gap in spaces with constant negative
curvature, such an effective reduction for scalar fields is absent and there
are not problems with radiative corrections due to scalar fields. Therefore,
dynamical symmetry breaking with the effective reduction of the dimension of
spacetime for fermions in the infrared region is consistent with the
Mermin-Wagner-Coleman theorem, which forbids spontaneous symmetry breaking in
(1 + 1)-dimensional spacetime.Comment: minor text changes, added new reference
The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation
Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5’cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3’ UTR motif. Caf20p binds all tested motif-containing 3’ UTRs. Caf20p and the 3’UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3’UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the regulatory role of Caf20p in the mRNA-specific repression of protein synthesis beyond its interaction with eIF4E
Citizenship status and career self-efficacy: An intersectional study of biomedical trainees in the United States
This study examines the intersectional role of citizenship and gender with career self-efficacy amongst 10,803 doctoral and postdoctoral trainees in US universities. These biomedical trainees completed surveys administered by 17 US institutions that participated in the National Institutes of Health Broadening Experiences in Scientific Training (NIH BEST) Programs. Findings indicate that career self-efficacy of non-citizen trainees is significantly lower than that of US citizen trainees. While lower career efficacy was observed in women compared with men, it was even lower for non-citizen female trainees. Results suggest that specific career interests may be related to career self-efficacy. Relative to US citizen trainees, both male and female non-citizen trainees showed higher interest in pursuing a career as an academic research investigator. In comparison with non-citizen female trainees and citizen trainees of all genders, non-citizen male trainees expressed the highest interest in research-intensive (and especially principal investigator) careers. The authors discuss potential causes for these results and offer recommendations for increasing trainee career self-efficacy which can be incorporated into graduate and postdoctoral training
Career self-efficacy disparities in underrepresented biomedical scientist trainees
The present study examines racial, ethnic, and gender disparities in career self-efficacy amongst 6077 US citizens and US naturalized graduate and postdoctoral trainees. Respondents from biomedical fields completed surveys administered by the National Institutes of Health Broadening Experiences in Scientific Training (NIH BEST) programs across 17 US institutional sites. Graduate and postdoctoral demographic and survey response data were examined to evaluate the impact of intersectional identities on trainee career self-efficacy. The study hypothesized that race, ethnicity and gender, and the relations between these identities, would impact trainee career self-efficacy. The analysis demonstrated that racial and ethnic group, gender, specific career interests (academic principal investigator vs. other careers), and seniority (junior vs. senior trainee level) were, to various degrees, all associated with trainee career self-efficacy and the effects were consistent across graduate and postdoctoral respondents. Implications for differing levels of self-efficacy are discussed, including factors and events during training that may contribute to (or undermine) career self-efficacy. The importance of mentorship for building research and career self-efficacy of trainees is discussed, especially with respect to those identifying as women and belonging to racial/ethnic populations underrepresented in biomedical sciences. The results underscore the need for change in the biomedical academic research community in order to retain a diverse biomedical workforce
Occupational Therapy Intervention with Children Survivors of War
A preventive occupational therapy program with children surviving the Kosovo
conflict is examined. The objective of the program was to facilitate the emotional
expression of traumatic experiences in order to prevent the development of future
psychological problems. The intervention was based on a community-centred
approach with spirituality as a central focus of the intervention.The Model of Human
Occupation and the Occupational Performance Process Model were utilized to guide
the identification and intervention of occupational performance issues.The children’s
return from a land of war to a land of children demonstrates the potential of occupational
therapy intervention in this field. With increasing awareness of populations
facing social and political challenges, there is a growing importance of the concept of
occupational justice and the need to work against occupational apartheid.Cet article décrit un programme de prévention en ergothérapie qui était destiné aux
enfants ayant survécu au conflit du Kosovo. L’objectif du programme était d’aider
les enfants à exprimer les émotions qu’ils avaient ressenties lors d’expériences
traumatiques afin de prévenir l’apparition de problèmes psychologiques.
L’intervention était basée sur une approche communautaire s’articulant autour de
la spiritualité. Le Modèle de l’occupation humaine et le Modèle du processus
d’intervention dans le rendement occupationnel ont été utilisés pour cibler les
difficultés en matière de rendement occupationnel et pour déterminer les
interventions requises. Le retour des enfants d’un monde de guerre vers le monde de
l’enfance démontre la possibilité de proposer une intervention ergothérapique
dans ce domaine. La conscientisation de plus en plus grand face à la détresse des
populations confrontées à des problèmes politiques et sociaux entraîne une
augmentation de l’importance du concept de la justice occupationnelle et du besoin
de lutter contre l’apartheid occupationnel
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
Magnetic Catalysis: A Review
We give an overview of the magnetic catalysis phenomenon. In the framework of
quantum field theory, magnetic catalysis is broadly defined as an enhancement
of dynamical symmetry breaking by an external magnetic field. We start from a
brief discussion of spontaneous symmetry breaking and the role of a magnetic
field in its a dynamics. This is followed by a detailed presentation of the
essential features of the phenomenon. In particular, we emphasize that the
dimensional reduction plays a profound role in the pairing dynamics in a
magnetic field. Using the general nature of underlying physics and its
robustness with respect to interaction types and model content, we argue that
magnetic catalysis is a universal and model-independent phenomenon. In support
of this claim, we show how magnetic catalysis is realized in various models
with short-range and long-range interactions. We argue that the general nature
of the phenomenon implies a wide range of potential applications: from certain
types of solid state systems to models in cosmology, particle and nuclear
physics. We finish the review with general remarks about magnetic catalysis and
an outlook for future research.Comment: 37 pages, to appear in Lect. Notes Phys. "Strongly interacting matter
in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A.
Schmitt, H.-U. Yee. Version 2: references adde
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
- …