2,448 research outputs found

    Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory

    Full text link
    Properties of the proton and neutron are studied in partially-quenched chiral perturbation theory at finite lattice spacing. Masses, magnetic moments, the matrix elements of isovector twist-2 operators and axial-vector currents are examined at the one-loop level in a double expansion in the light-quark masses and the lattice spacing. This work will be useful in extrapolating the results of simulations using Wilson valence and sea quarks, as well as simulations using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe

    Hadronic Electromagnetic Properties at Finite Lattice Spacing

    Full text link
    Electromagnetic properties of the octet mesons as well as the octet and decuplet baryons are augmented in quenched and partially quenched chiral perturbation theory to include O(a) corrections due to lattice discretization. We present the results for the SU(3) flavor group in the isospin limit as well as the results for SU(2) flavor with non-degenerate quarks. These corrections will be useful for extrapolation of lattice calculations using Wilson valence and sea quarks, as well as calculations using Wilson sea quarks and Ginsparg-Wilson valence quarks.Comment: 19 pages, 0 figures, RevTeX

    On the modification of the Efimov spectrum in a finite cubic box

    Full text link
    Three particles with large scattering length display a universal spectrum of three-body bound states called "Efimov trimers''. We calculate the modification of the Efimov trimers of three identical bosons in a finite cubic box and compute the dependence of their energies on the box size using effective field theory. Previous calculations for positive scattering length that were perturbative in the finite volume energy shift are extended to arbitrarily large shifts and negative scattering lengths. The renormalization of the effective field theory in the finite volume is explicitly verified. Moreover, we investigate the effects of partial wave mixing and study the behavior of shallow trimers near the dimer energy. Finally, we provide numerical evidence for universal scaling of the finite volume corrections.Comment: 21 pages, 8 figures, published versio

    Simulations with different lattice Dirac operators for valence and sea quarks

    Get PDF
    We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a "mixed" action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence quarks. The local Symanzik action for this mixed theory is derived to O(a), and the appropriate low energy chiral effective Lagrangian is constructed, including the leading O(a) contributions. Using this Lagrangian one can calculate expressions for physical observables and determine the Gasser-Leutwyler coefficients by fitting them to the lattice data.Comment: 17 pages, 1 ps figure (2 clarification paragraphs added

    More on the infrared renormalization group limit cycle in QCD

    Get PDF
    We present a detailed study of the recently conjectured infrared renormalization group limit cycle in QCD using chiral effective field theory. It was conjectured that small increases in the up and down quark masses can move QCD to the critical trajectory for an infrared limit cycle in the three-nucleon system. At the critical quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. We exemplify three parameter sets where this effect occurs at next-to-leading order in the chiral counting. For one of them, we study the structure of the three-nucleon system in detail using both chiral and contact effective field theories. Furthermore, we investigate the matching of the chiral and contact theories in the critical region and calculate the influence of the limit cycle on three-nucleon scattering observables.Comment: 17 pages, 7 figures, discussion improved, results unchanged, version to appear in EPJ

    Application of the Density Matrix Renormalization Group in momentum space

    Full text link
    We investigate the application of the Density Matrix Renormalization Group (DMRG) to the Hubbard model in momentum-space. We treat the one-dimensional models with dispersion relations corresponding to nearest-neighbor hopping and 1/r1/r hopping and the two-dimensional model with isotropic nearest-neighbor hopping. By comparing with the exact solutions for both one-dimensional models and with exact diagonalization in two dimensions, we first investigate the convergence of the ground-state energy. We find variational convergence of the energy with the number of states kept for all models and parameter sets. In contrast to the real-space algorithm, the accuracy becomes rapidly worse with increasing interaction and is not significantly better at half filling. We compare the results for different dispersion relations at fixed interaction strength over bandwidth and find that extending the range of the hopping in one dimension has little effect, but that changing the dimensionality from one to two leads to lower accuracy at weak to moderate interaction strength. In the one-dimensional models at half-filling, we also investigate the behavior of the single-particle gap, the dispersion of spinon excitations, and the momentum distribution function. For the single-particle gap, we find that proper extrapolation in the number of states kept is important. For the spinon dispersion, we find that good agreement with the exact forms can be achieved at weak coupling if the large momentum-dependent finite-size effects are taken into account for nearest-neighbor hopping. For the momentum distribution, we compare with various weak-coupling and strong-coupling approximations and discuss the importance of finite-size effects as well as the accuracy of the DMRG.Comment: 15 pages, 11 eps figures, revtex

    Interdisciplinary research collegium in advanced maritime systems design

    No full text
    The education of naval architects, marine engineers and others who are the active contributors to the ship design processes is heavily focussed on engineering fundamentals, often aligned with traditional university course constraints. The concept of a research collegium is described whose aim is to provide an environment where young people in their formative postgraduate years can learn and work in a small, mixed discipline group drawn from the worldwide maritime community to develop their skills whilst completing a project in advanced ship design. The brief that initiates each project sets challenging user requirements which encourage each team to develop an imaginative solution, using their individual knowledge and experience, together with learning derived from teaching which form a common element of the early part of the collegiu

    X-ray photoemission study of NiS_{2-x}Se_x (x = 0.0 - 1.2)

    Full text link
    Electronic structure of NiS_{2-x}Se_x system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core level as well as the valence band spectra of NiS_2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the band width W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.Comment: 19 pages, 6 figures, To appear in Phys. Rev. B, 200

    Interaction between nitric oxide signaling and gap junctions: Effects on vascular function

    Get PDF
    Nitric oxide signaling, through eNOS (or possibly nNOS), and gap junction communication are essential for normal vascular function. While each component controls specific aspects of vascular function, there is substantial evidence for cross-talk between nitric oxide signaling and the gap junction proteins (connexins), and more recently, protein protein association between eNOS and connexins. This review will examine the evidence for interaction between these pathways in normal and diseased arteries, highlight the questions that remain about the mechanisms of their interaction, and explore the possible interaction between nitric oxide signaling and the newly discovered pannexin channels. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. (C) 2011 Elsevier B.V. All rights reserved

    Non-perturbative equivalences among large N gauge theories with adjoint and bifundamental matter fields

    Full text link
    We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra.Comment: 40 pages, JHEP styl
    • …
    corecore