12 research outputs found

    Communication is key: a study of the development of communication key skills in China

    Get PDF
    Different countries offer alternative curricula around what might be designated language, literacy and/or communication. This paper focuses on the latter which has typically been associated with vocational education and often labelled a ‘key’ or ‘core’ skill that forms part of a wider set of life and employability skills. In recent years, as China has emerged as a global economy, education has been significant in its policy and development. This research explores staff and student responses to the introduction of a key skills communication course in three Chinese further education vocational colleges. The initiative was prompted by research in China which had suggested that communication is important not just for education (Ye and Li 2007) but also for employability, and that the ability to communicate effectively could be instrumental in individuals’ success and development (Tong and Zhong 2008). It explores what communication key skills might mean in a Chinese context and questions notions of transferability and of competence and performance in communication. It analyses how motivation could affect learner success and the relationship of pedagogy to curriculum and, finally, it considers how communication might be an element in the longer-term social and political development of critical literacies

    Synchronous communication in PLM environments using annotated CAD models

    Full text link
    The connection of resources, data, and knowledge through communication technology plays a vital role in current collaborative design methodologies and Product Lifecycle Management (PLM) systems, as these elements act as channels for information and meaning. Despite significant advances in the area of PLM, most communication tools are used as separate services that are disconnected from existing development environments. Consequently, during a communication session, the specific elements being discussed are usually not linked to the context of the discussion, which may result in important information getting lost or becoming difficult to access. In this paper, we present a method to add synchronous communication functionality to a PLM system based on annotated information embedded in the CAD model. This approach provides users a communication channel that is built directly into the CAD interface and is valuable when individuals need to be contacted regarding the annotated aspects of a CAD model. We present the architecture of a new system and its integration with existing PLM systems, and describe the implementation details of an annotation-based video conferencing module for a commercial CAD application.This work was supported by the Spanish Ministry of Economy and Competitiveness and the FEDER Funds, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).Camba, JD.; Contero, M.; Salvador Herranz, GM.; Plumed, R. (2016). Synchronous communication in PLM environments using annotated CAD models. Journal of Systems Science and Systems Engineering. 25(2):142-158. https://doi.org/10.1007/s11518-016-5305-5S142158252Abrahamson, S., Wallace, D., Senin, N. & Sferro, P. (2000). Integrated design in a service marketplace. Computer-Aided Design, 32(2):97–107.Ahmed, S. (2005). Encouraging reuse of design knowledge: a method to index knowledge. Design Studies, 26:565–592.Alavi, M. & Tiwana, A (2002). Knowledge integration in virtual teams: the potential role of KMS. Journal of the American Society for Information Science and Technology, 53:1029–1037.Ameri, F. & Dutta, D. (2005). Product lifecycle management: closing the knowledge loops. Computer-Aided Design and Applications, 2(5):577–590.Anderson, A.H., Smallwood, L., MacDonald, R., Mullin, J., Fleming, A. & O'Malley, C. (2000). Video data and video links in mediated communication: what do users value? International Journal of Human-Computer Studies, 52(1):165–187.Arias, E., Eden, H., Fischer, G., Gorman, A. & Scharff, E. (2000). Transcending the individual human mind–creating shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1): 84–113.Barley, W.C., Leonardi, P.M., & Bailey, D.E. (2012). Engineering objects for collaboration: strategies of ambiguity and clarity at knowledge boundaries. Human Communication Research, 38:280–308.Boujut, J.F. & Dugdale, J. (2006). Design of a 3D annotation tool for supporting evaluation activities in engineering design. Cooperative Systems Design, COOP 6:1–8.Camba, J., Contero, M., Johnson, M. & Company, P. (2014). Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. Computer-Aided Design, 57:61–73.Camba, J., Contero, M. & Salvador-Herranz, G. (2014). Speak with the annotator: promoting interaction in a knowledge-based CAD environment built on the extended annotation concept. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 196–201.Chudoba, K.M., Wynn, E., Lu, M. & Watson-Manheim, M.B. (2005). How virtual are we? Measuring virtuality and understanding its impact in a global organization. Information Systems Journal, 15(4):279–306.Danesi, F., Gardan, N. & Gardan, Y. (2006). Collaborative Design: from Concept to Application. Geometric Modeling and Imaging—New Trends, 90–96.Durstewitz, M., Kiefner, B., Kueke, R., Putkonen, H., Repo, P. & Tuikka, T. (2002). Virtual collaboration environment for aircraft design. Proceedings of the IEEE 6th International Conference on Information Visualisation, 502–507.Fisher, D., Brush, A.J., Gleave, E. & Smith, M.A. (2006). Revisiting Whittaker and Sidner’s email overload ten years later. Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work. ACM, BanffFonseca, M.J., Henriques, E., Silva, N., Cardoso, T. & Jorge, J.A. (2006). A collaborative CAD conference tool to support mobile engineering. Rapid Product Development (RPD’06), Marinha Grande, Portugal.Frechette, S.P. (2011). Model based enterprise for manufacturing. Proceedings of the 44th CIRP International Conference on Manufacturing Systems.Fu, W.X., Bian, J. & Xu, Y.M. (2013). A video conferencing system for collaborative engineering design. Applied Mechanics and Materials, 344:246–252.Fuh, J.Y.H. & Li, W.D. (2005). Advances in collaborative CAD: the-state-of-the art. Computer-Aided Design, 37:571–581.Fussell, S.R., Kraut, R.E. & Siegel, J. (2000). Coordination of communication: effects of shared visual context on collaborative work. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, 21–30.Gajewska, H., Kistler, J., Manasse, M.S. & Redell, D. (1994). Argo: a system for distributed collaboration. Proceedings of the ACM Second International Conference on Multimedia, San Francisco, CA, USA. 433–440.Gantz, J., Reinsel, D., Chute, C., Schlichting, W., Mcarthur, J., Minton, S., Xheneti, I., Toncheva, A. & Manfrediz, A. (2007). The expanding digital universe: a forecast of worldwide information growth through 2010. IDC, Massachusetts.Gowan, Jr. J.A. & Downs, J.M. (1994). Video conferencing human-machine interface: a field study. Information and Management, 27(6):341–356.Gupta, A., Mattarelli, E., Seshasai, S. & Broschak, J. (2009). Use of collaborative technologies and knowledge sharing in co-located and distributed teams: towards the 24-h knowledge factory. The Journal of Strategic Information Systems, 18:147–161.Hickson, I. (2009). The Web Socket Protocol IETF, Standards Track.Hong, J., Toye, G. & Leifer, L.J. (1996). Engineering design notebook for sharing and reuse. Computers in Industry, 29:27–35.Isaacs, E.A. & Tang, J.C. (1994). What video can and cannot do for collaboration: a case study. Multimedia Systems, 2(2):63–73.Karsenty, L. (1999). Cooperative work and shared visual context: an empirical study of comprehension problems in side-by-side and remote help dialogues. Human Computer Interaction, 14(3): 283–315.Lahti, H., Seitamaa-Hakkarainen, P. & Hakkarainen, K. (2004). Collaboration patterns in computer supported collaborative designing. Design Studies, 25:351–371.Leenders, R.T.A., Van Engelen, J.M. & Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1):69–92.Levitt, R.E., Jin, Y. & Dym, C.L. (1991). Knowledge-based support for management of concurrent, multidisciplinary design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 5(2):77–95.Li, C., McMahon, C. & Newnes, L. (2009). Annotation in product lifecycle management: a review of approaches. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009. Vol. 2. New York: ASME, 797–806.Li, W.D., Lu, W.F., Fuh, J.Y. & Wong, Y.S. (2005). Collaborative computer-aided design-research and development status. Computer-Aided Design, 37(9):931–940.Londono, F., Cleetus, K.J., Nichols, D.M., Iyer, S., Karandikar, H.M., Reddy, S.M., Potnis, S.M., Massey, B., Reddy, A. & Ganti, V. (1992). Coordinating a virtual team. CERC-TR-RN-92-005, Concurrent Engineering Research Centre, West Virginia University, West Virginia.Lubell, J., Chen, K., Horst, J., Frechette, S., & Huang, P. (2012). Model based enterprise/technical data package summit report. NIST Technical Note, 1753.May, A. & Carter, C. (2001). A case study of virtual team working in the European automotive industry. International Journal of Industrial Ergonomics, 27(3):171–186.Olson, J.S., Olson, G.M. & Meader, D.K. (1995). What mix of video and audio is useful for small groups doing remote real-time design work? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, Addison-Wesley Publishing Co.Ping-Hung, H., Mishra, C.S. & Gobeli, D.H. (2003). The return on R&D versus capital expenditures in pharmaceutical and chemical industries. IEEE Transactions on Engineering Management, 50:141–150.Sharma, A. (2005). Collaborative product innovation: integrating elements of CPI via PLM framework. Computer-Aided Design, 37(13):1425–1434.Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B. & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132.Siltanen, P. & Valli, S. (2013). Web-based 3D Mediated Communication in Manufacturing Industry. Concurrent Engineering Approaches for Sustainable Product Development in a Multidisciplinary Environment, 1181–1192. Springer London.Stark, J. (2011). Product Lifecycle Management. 1–16. Springer London.Tavcar, J., Potocnik, U. & Duhovnik, J. (2013). PLM used as a backbone for concurrent engineering in supply chain. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment, 681–692.Tay, F.E.H. & Ming, C. (2001). A shared multi-media design environment for concurrent engineering over the internet. Concurrent Engineering, 9(1):55–63.Tay, F.E.H. & Roy, A. (2003). CyberCAD: a collaborative approach in 3D-CAD technology in a multimedia-supported environment. Computers in Industry, 52(2):127–145.Toussaint, J. & Cheng, K. (2002). Design agility and manufacturing responsiveness on the web. Integrated Manufacturing Systems, 13(5):328–339.Tsoi, K.N. & Rahman, S.M. (1996). Media-on-demand multimedia electronic mail: a tool for collaboration on the web. Proceedings of the 5th IEEE International Symposium on High Performance Distributed Computing.Upton, D.M. & Mcafee, A. (1999). The Real Virtual Factory. Harvard Business School Press, 69–89.Vila, C., Estruch, A., Siller, H.R., Abellán, J.V. & Romero, F. (2007). Workflow methodology for collaborative design and manufacturing. Cooperative Design, Visualization, and Engineering 42–49, Springer Berlin Heidelberg.Wasiak, J., Hicks, B., Newnes, L., Dong, A., & Burrow, L. (2010). Understanding engineering email: the development of a taxonomy for identifying and classifying engineering work. Research in Engineering Design, 21(1):43–64.Wasko, M.M. & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly: Management Information Systems, 29:35–57.Yang, Q.Z., Zhang, Y., Miao, C.Y. & Shen, Z.Q. (2008). Semantic annotation of digital engineering resources for multidisciplinary design collaboration. ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 617–624. American Society of Mechanical Engineers.You, C.F. & Chao, S.N. (2006). Multilayer architecture in collaborative environment. Concurrent Engineering Research and Applications, 14(4):273–281.Yuan, Y.C., Fulk, J., Monge, P.R. & Contractor, N. (2010). Expertise directory development, shared task interdependence, and strength of communication network ties as multilevel predictors of expertise exchange in transactive memory work groups. Communication Research, 37: 20–47

    Cognition, language, and communication

    No full text

    LightCollabo: Distant Collaboration Support System for Manufacturers

    No full text

    10,000 Miles across the room? Emergent coordination in multiparty collaboration

    No full text
    This paper addresses cross-boundary coordination in a multiparty collaboration. So far, collaboration among among multiple dispersed parties has received scant attention in research on cross-boundary coordination. Building on this gap, this study analyzes an extreme case of inter-organizational collaboration between four geographically dispersed groups of engineers from subsidiaries of a Japanese multinational and an American engineering contractor. We explain how coordination is achieved among multiple parties. In our study, diverse boundaries posed challenges to the execution of work tasks being performed. In response, collaborating parties developed four organizing processes for coordinating their task-related activities, comprising information sharing, task negotiation, task execution and task integration. We suggest that together, these processes constitute a dynamic coordinating structure that is developed and enacted in parties' everyday collaborating and coordinating activities, which may enable but can also impede the successful execution of joint work tasks. © 2014 Authors

    Anthropomorphism and Human Likeness in the Design of Robots and Human-Robot Interaction

    No full text
    Abstract. In this literature review we explain anthropomorphism and its role in the design of socially interactive robots and human-robot interaction. We illustrate the social phenomenon of anthropomorphism which describes people’s tendency to attribute lifelike qualities to objects and other non lifelike artifacts. We present theoretical backgrounds from social sciences, and integrate related work from robotics research, including results from experiments with social robots. We present different approaches for anthropomorphic and humanlike form in a robot’s design related to its physical shape, its behavior, and its interaction with humans. This review provides a comprehensive understanding of anthropomorphism in robotics, collects and reports relevant references, and gives an outlook on anthropomorphic human-robot interaction

    Transformações da terra: para uma perspectiva agroecológica na história Transformation of the land: towards an agroecological perspective in history

    No full text
    O artigo discute a constituição do campo da história ambiental, que se deu nos anos 70 em meio aos debates sobre a crise ecológica e a eclosão do movimento ambientalista. Esta história não aceita a noção de que as sociedades humanas não produzem alterações ambientais significativas, e interpela as condições específicas dessa interação recorrente. O sistema agroecológico representa um dos casos mais típicos de rearranjo da atividade humana sobre os ecossistemas naturais, em uma relação complexa de interação entre plantas nativas, vegetação forasteira, fertilidade dos solos e diversas práticas agrícolas. O itinerário dessas mudanças é essencial para se compreender a história do ponto de vista ambiental<br>This article discusses the formation of the field of environmental history which originated in the 1970s in the middle of the debates on the ecologic crisis and the emergence of the environmental movement. This history rejects the notion that human societies do not cause significant environmental alterations and analyzes the specific conditions of that recurring interaction. The agroecologic system is one of the most typical cases of the intervention of human activity on natural ecosystems in a complex interaction between indigenous plants, exotic vegetation, fertility of the soil and diverse agricultural practices. The roadmap of these changes is essential to understand history from the view point of the environment
    corecore