297 research outputs found

    Hawking's radiation in non-stationary rotating de Sitter background

    Full text link
    Hawking's radiation effect of Klein-Gordon scalar field, Dirac particles and Maxwell's electromagnetic field in the non-stationary rotating de Sitter cosmological space-time is investigated by using a method of generalized tortoise co-ordinates transformation. The locations and the temperatures of the cosmological horizons of the non-stationary rotating de Sitter model are derived. It is found that the locations and the temperatures of the rotating cosmological model depend not only on the time but also on the angle. The stress-energy regularization techniques are applied to the two dimensional analog of the de Sitter metrics and the calculated stress-energy tensor contains the thermal radiation effect.Comment: 13 pages, LaTex format, accepted for publication Astrophysics and Space Science, Springer; Journal ID: 10509, Article ID: 606, Date 2011-01-1

    Generalized uncertainty principle and correction value to the black hole entropy

    Get PDF
    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking entropy of the black hole. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is negative. This result is different from the known result at present. Our method is valid not only for single horizon spacetime but also for double horizons spacetime. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the condition that Bekenstein-Hawking area theorem is valid

    Multiple sources of infection and potential endemic characteristics of the large outbreak of dengue in Guangdong in 2014

    Get PDF
    A large outbreak of dengue, with the most documented cases, occurred in Guangdong China in 2014. Epidemiological studies and phylogenetic analysis of the isolated dengue virus (DENV) showed this outbreak was attributed to multiple sources and caused by at least two genotypes of DENV-1 (Genotypes I and III) and two genotypes of DENV-2 (Cosmopolitan and Asian I Genotypes). A retrospective review and phylogenetic analysis of DENV isolated in Guangdong showed that DENV-1 Genotype I strains were reported continuously during 2004-2014, Genotype III strains were reported during 2009-2014 ; DENV-2 Cosmopolitan and Asian I Genotype strains were reported continuously during 2012-2014. At least 45,171 cases were reported in this outbreak, with 65.9% of the patients in the 21-55-year-old group. A trend toward a decrease in the daily newly emerged cases lagged by approximately 20 days compared with the mosquito density curve. Several epidemiological characteristics of this outbreak and the stably sustained serotypes and genotypes of DENV isolated in Guangdong suggest that Guangdong has been facing a threat of transforming from a dengue epidemic area to an endemic area. The high temperature, drenching rain, rapid urbanization, and pandemic of dengue in Southeast Asia may have contributed to this large outbreak of dengue

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric

    Full text link
    In case of spacetimes with single horizon, there exist several well-established procedures for relating the surface gravity of the horizon to a thermodynamic temperature. Such procedures, however, cannot be extended in a straightforward manner when a spacetime has multiple horizons. In particular, it is not clear whether there exists a notion of global temperature characterizing the multi-horizon spacetimes. We examine the conditions under which a global temperature can exist for a spacetime with two horizons using the example of Schwarzschild-De Sitter (SDS) spacetime. We systematically extend different procedures (like the expectation value of stress tensor, response of particle detectors, periodicity in the Euclidean time etc.) for identifying a temperature in the case of spacetimes with single horizon to the SDS spacetime. This analysis is facilitated by using a global coordinate chart which covers the entire SDS manifold. We find that all the procedures lead to a consistent picture characterized by the following features: (a) In general, SDS spacetime behaves like a non-equilibrium system characterized by two temperatures. (b) It is not possible to associate a global temperature with SDS spacetime except when the ratio of the two surface gravities is rational (c) Even when the ratio of the two surface gravities is rational, the thermal nature depends on the coordinate chart used. There exists a global coordinate chart in which there is global equilibrium temperature while there exist other charts in which SDS behaves as though it has two different temperatures. The coordinate dependence of the thermal nature is reminiscent of the flat spacetime in Minkowski and Rindler coordinate charts. The implications are discussed.Comment: 12 page

    Novel structure for magnetic rotation bands in 60Ni

    Full text link
    The self-consistent tilted axis cranking relativistic mean-field theory based on a point-coupling interaction has been established and applied to investigate systematically the newly observed shears bands in 60Ni. The tilted angles, deformation parameters, energy spectra, and reduced M1 and E2E2 transition probabilities have been studied in a fully microscopic and self-consistent way for various configurations and rotational frequencies. It is found the competition between the configurations and the transitions from the magnetic to the electric rotations have to be considered in order to reproduce the energy spectra as well as the band crossing phenomena. The tendency of the experimental electromagnetic transition ratios B(M1)/B(E2) is in a good agreement with the data, in particular, the B(M1) values decrease with increasing spin as expected for the shears mechanism, whose characteristics are discussed in detail by investigating the various contributions to the total angular momentum as well.Comment: 17 pages, 5 figure

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    G\"{o}del black hole, closed timelike horizon, and the study of particle emissions

    Full text link
    We show that a particle, with positive orbital angular momentum, following an outgoing null/timelike geodesic, shall never reach the closed timelike horizon (CTH) present in the (4+1)(4+1)-dimensional rotating G\"{o}del black hole space-time. Therefore a large part of this space-time remains inaccessible to a large class of geodesic observers, depending on the conserved quantities associated with them. We discuss how this fact and the existence of the closed timelike curves present in the asymptotic region make the quantum field theoretic study of the Hawking radiation, where the asymptotic observer states are a pre-requisite, unclear. However, the semiclassical approach provides an alternative to verify the Smarr formula derived recently for the rotating G\"{o}del black hole. We present a systematic analysis of particle emissions, specifically for scalars, charged Dirac spinors and vectors, from this black hole via the semiclassical complex path method.Comment: 13 pages; minor changes, references adde

    A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions

    Get PDF
    Scintillating crystal detector may offer some potential advantages in the low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed near the core of Nuclear Power Station II in Taiwan is being constructed for the studies of electron-neutrino scatterings and other keV-MeV range neutrino interactions. The motivations of this detector approach, the physics to be addressed, the basic experimental design, and the characteristic performance of prototype modules are described. The expected background channels and their experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
    corecore