166 research outputs found

    SU(4) Spin-Orbital Two-Leg Ladder, Square and Triangle Lattices

    Get PDF
    Based on the generalized valence bond picture, a Schwinger boson mean field theory is applied to the symmetric SU(4) spin-orbital systems. For a two-leg SU(4) ladder, the ground state is a spin-orbital liquid with a finite energy gap, in good agreement with recent numerical calculations. In two-dimensional square and triangle lattices, the SU(4) Schwinger bosons condense at (\pi/2,\pi/2) and (\pi/3,\pi/3), respectively. Spin, orbital, and coupled spin-orbital static susceptibilities become singular at the wave vectors, twice of which the bose condensation arises at. It is also demonstrated that there are spin, orbital, and coupled spin-orbital long-range orderings in the ground state.Comment: 5 page

    Generalized hole-particle transformations and spin reflection positivity in multi-orbital systems

    Full text link
    We propose a scheme combining spin reflection positivity and generalized hole-particle and orbital transformations to characterize the symmetry properties of the ground state for some correlated electron models on bipartite lattices. In particular, we rigorously determine at half-filling and for different regions of the parameter space the spin, orbital and η\eta pairing pseudospin of the ground state of generalized two-orbital Hubbard models which include the Hund's rule coupling.Comment: 6 pages, 2 figure

    Multiple sources of infection and potential endemic characteristics of the large outbreak of dengue in Guangdong in 2014

    Get PDF
    A large outbreak of dengue, with the most documented cases, occurred in Guangdong China in 2014. Epidemiological studies and phylogenetic analysis of the isolated dengue virus (DENV) showed this outbreak was attributed to multiple sources and caused by at least two genotypes of DENV-1 (Genotypes I and III) and two genotypes of DENV-2 (Cosmopolitan and Asian I Genotypes). A retrospective review and phylogenetic analysis of DENV isolated in Guangdong showed that DENV-1 Genotype I strains were reported continuously during 2004-2014, Genotype III strains were reported during 2009-2014 ; DENV-2 Cosmopolitan and Asian I Genotype strains were reported continuously during 2012-2014. At least 45,171 cases were reported in this outbreak, with 65.9% of the patients in the 21-55-year-old group. A trend toward a decrease in the daily newly emerged cases lagged by approximately 20 days compared with the mosquito density curve. Several epidemiological characteristics of this outbreak and the stably sustained serotypes and genotypes of DENV isolated in Guangdong suggest that Guangdong has been facing a threat of transforming from a dengue epidemic area to an endemic area. The high temperature, drenching rain, rapid urbanization, and pandemic of dengue in Southeast Asia may have contributed to this large outbreak of dengue

    Essential Role of the Cooperative Lattice Distortion in the Charge, Orbital and Spin Ordering in doped Manganites

    Full text link
    The role of lattice distortion in the charge, orbital and spin ordering in half doped manganites has been investigated. For fixed magnetic ordering, we show that the cooperative lattice distortion stabilize the experimentally observed ordering even when the strong on-site electronic correlation is taken into account. Furthermore, without invoking the magnetic interactions, the cooperative lattice distortion alone may lead to the correct charge and orbital ordering including the charge stacking effect, and the magnetic ordering can be the consequence of such a charge and orbital ordering. We propose that the cooperative nature of the lattice distortion is essential to understand the complicated charge, orbital and spin ordering observed in doped manganites.Comment: 5 pages,4 figure

    Aspects of the FM Kondo Model: From Unbiased MC Simulations to Back-of-an-Envelope Explanations

    Full text link
    Effective models are derived from the ferromagnetic Kondo lattice model with classical corespins, which greatly reduce the numerical effort. Results for these models are presented. They indicate that double exchange gives the correct order of magnitude and the correct doping dependence of the Curie temperature. Furthermore, we find that the jump in the particle density previously interpreted as phase separation is rather explained by ferromagnetic polarons.Comment: Proceedings of Wandlitz Days of Magnetism 200

    Antiferromagnetism in the Exact Ground State of the Half Filled Hubbard Model on the Complete-Bipartite Graph

    Full text link
    As a prototype model of antiferromagnetism, we propose a repulsive Hubbard Hamiltonian defined on a graph \L={\cal A}\cup{\cal B} with A∩B=∅{\cal A}\cap {\cal B}=\emptyset and bonds connecting any element of A{\cal A} with all the elements of B{\cal B}. Since all the hopping matrix elements associated with each bond are equal, the model is invariant under an arbitrary permutation of the A{\cal A}-sites and/or of the B{\cal B}-sites. This is the Hubbard model defined on the so called (NA,NB)(N_{A},N_{B})-complete-bipartite graph, NAN_{A} (NBN_{B}) being the number of elements in A{\cal A} (B{\cal B}). In this paper we analytically find the {\it exact} ground state for NA=NB=NN_{A}=N_{B}=N at half filling for any NN; the repulsion has a maximum at a critical NN-dependent value of the on-site Hubbard UU. The wave function and the energy of the unique, singlet ground state assume a particularly elegant form for N \ra \inf. We also calculate the spin-spin correlation function and show that the ground state exhibits an antiferromagnetic order for any non-zero UU even in the thermodynamic limit. We are aware of no previous explicit analytic example of an antiferromagnetic ground state in a Hubbard-like model of itinerant electrons. The kinetic term induces non-trivial correlations among the particles and an antiparallel spin configuration in the two sublattices comes to be energetically favoured at zero Temperature. On the other hand, if the thermodynamic limit is taken and then zero Temperature is approached, a paramagnetic behavior results. The thermodynamic limit does not commute with the zero-Temperature limit, and this fact can be made explicit by the analytic solutions.Comment: 19 pages, 5 figures .ep

    Proper weak-coupling approach to the periodic s-d(f) exchange model

    Full text link
    The periodic s-d(f) exchange model is characterized by a wide variety of interesting applications, a simple mathematical structure and a limited number of reliable approximations which take care of the quantum nature of the participating spins. We suggest the use of a projection-operator method for getting information perturbationally, which are not accessible via diagrammatic approaches. In this paper we present in particular results beyond perturbation theory, which are obtained such that almost all exactly known limiting cases are incorporated correctly. We discuss a variety of possible methods and evaluate their consequences for one-particle properties. These considerations serve as a guideline for a more effective approach to the model.Comment: 11 pages, 6 figures; accepted by Phys. Rev.

    Partial Wave Analysis of J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∼500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Higher order WKB corrections to black hole entropy in brick wall formalism

    Full text link
    We calculate the statistical entropy of a quantum field with an arbitrary spin propagating on the spherical symmetric black hole background by using the brick wall formalism at higher orders in the WKB approximation. For general spins, we find that the correction to the standard Bekenstein-Hawking entropy depends logarithmically on the area of the horizon. Furthermore, we apply this analysis to the Schwarzschild and Schwarzschild-AdS black holes and discuss our results.Comment: 21 pages, published versio

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψ→γηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+K−π+π−\gamma K^+K^-\pi^+\pi^-, γπ+π−π+π−\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π∓\gamma K^\pm K^0_S \pi^\mp (with KS0→π+π−K^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕ→K+K−\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
    • …
    corecore