1,382 research outputs found

    Vacuum oscillations of solar neutrinos: correlation between spectrum distortion and seasonal variations

    Get PDF
    Long length vacuum oscillations solution of the solar neutrino problem is discussed. We show that there is a strict correlation between a distortion of the neutrino energy spectrum and an amplitude of seasonal variations of the neutrino flux. The slope parameter which characterizes a distortion of the recoil electron energy spectrum in the Super-Kamiokande experiment and the seasonal asymmetry of the signal have been calculated in a wide range of oscillation parameters. The correlation of the slope and asymmetry gives crucial criteria for identification or exclusion of this solution. For the positive slope indicated by preliminary Super-Kamiokande data we predict (40 - 60) % enhancement of the seasonal variations.Comment: 11 pages, 4 eps figures, LaTeX, analytical study and some explanations added, updated experimental results use

    Parametric Resonance in Oscillations of Atmospheric Neutrinos?

    Get PDF
    We consider a solution of the atmospheric neutrino problem based on oscillations of muon neutrinos to sterile neutrinos: νμ\nu_{\mu} \leftrightarrow νs\nu_s. The zenith angle (Θ\Theta) dependences of the neutrino and upward-going muon fluxes in presence of these oscillations are studied. The dependences have characteristic form with two dips: at cosΘ=0.6÷0.2\cos \Theta = -0.6 \div -0.2 and cosΘ=1.0÷0.8\cos \Theta = -1.0 \div -0.8. The latter dip is due to parametric resonance in oscillations of neutrinos which cross the core of the earth. A comparison of predictions with data from the MACRO, Baksan and Super-Kamiokande experiments is given.Comment: 14 pages + 9 eps figures in 6 pages, Latex fil

    Neutrinos with Mixing in Twisting Magnetic Fields

    Full text link
    Transitions in a system of neutrinos with vacuum mixing and magnetic moments, propagating in matter and transverse magnetic field, are considered. It is shown that in the realistic case of magnetic field direction varying along the neutrino path qualitatively new phenomena become possible: permutation of neutrino conversion resonances, appearance of resonances in the neutrino-antineutrino (νlLνˉlR\nu_{lL}\leftrightarrow\bar{\nu}_{lR}) transition channels, neutrino-antineutrino resonant conversion, large amplitude νlLνˉlR\nu_{lL}\leftrightarrow\bar{\nu}_{lR} oscillations, merging of different resonances (triple resonances). Possible phenomenological implications of these effects are briefly discussed.Comment: LaTeX, 35 pages, 4 figures (not included but available upon request). In memoriam of Ya.A. Smorodinsky. SISSA-170/92/E

    Classical Nambu-Goldstone fields

    Get PDF
    It is shown that a Nambu-Goldstone (NG) field may be coherently produced by a large number of particles in spite of the fact that the NG bosons do not couple to flavor conserving scalar densities like ψˉψ\bar{\psi}\psi. If a flavor oscillation process takes place the phases of the pseudo-scalar or flavor violating densities of different particles do not necessarily cancel each other. The NG boson gets a macroscopic source whenever the total (spontaneously broken) quantum number carried by the source particles suffers a net increase or decrease in time. If the lepton numbers are spontaneously broken such classical NG (majoron) fields may significantly change the neutrino oscillation processes in stars pushing the observational capabilities of neutrino-majoron couplings down to mν/300m_{\nu}/300 GeV.Comment: 11 pages, updated, to appear in PR

    Homestake result, sterile neutrinos and low energy solar neutrino experiments

    Full text link
    The Homestake result is about ~ 2 \sigma lower than the Ar-production rate, Q_{Ar}, predicted by the LMA MSW solution of the solar neutrino problem. Also there is no apparent upturn of the energy spectrum (R \equiv N_{obs}/N_{SSM}) at low energies in SNO and Super-Kamiokande. Both these facts can be explained if a light, \Delta m^2_{01} ~ (0.2 - 2) \cdot 10^{-5} eV^2, sterile neutrino exists which mixes very weakly with active neutrinos: \sin^2 2\alpha ~ (10^{-5} - 10^{-3}). We perform both the analytical and numerical study of the conversion effects in the system of two active neutrinos with the LMA parameters and one weakly mixed sterile neutrino. The presence of sterile neutrino leads to a dip in the survival probability in the intermediate energy range E = (0.5 - 5) MeV thus suppressing the Be, or/and pep, CNO as well as B electron neutrino fluxes. Apart from diminishing Q_{Ar} it leads to decrease of the Ge-production rate and may lead to decrease of the BOREXINO signal and CC/NC ratio at SNO. Future studies of the solar neutrinos by SNO, SK, BOREXINO and KamLAND as well as by the new low energy experiments will allow us to check this possibility. We present a general analysis of modifications of the LMA energy profile due to mixing with new neutrino states.Comment: Figures 5 and 6 modified, shorter version will be published in PR

    SN1987A and the Status of Oscillation Solutions to the Solar Neutrino Problem (including an appendix discussing the NC and day/night data from SNO)

    Get PDF
    We study neutrino oscillations and the level-crossing probability PLZ in power-law potential profiles A(r)\propto r^n. We give local and global adiabaticity conditions valid for all mixing angles theta and discuss different representations for PLZ. For the 1/r^3 profile typical of supernova envelopes we compare our analytical to numerical results and to earlier approximations used in the literature. We then perform a combined likelihood analysis of the observed SN1987A neutrino signal and of the latest solar neutrino data, including the recent SNO CC measurement. We find that, unless all relevant supernova parameters (released binding energy, \bar\nu_e and \bar\nu_{\mu,\tau} temperatures) are near their lowest values found in simulations, the status of large mixing type solutions deteriorates considerably compared to fits using only solar data. This is sufficient to rule out the vacuum-type solutions for most reasonable choices of astrophysics parameters. The LOW solution may still be acceptable, but becomes worse than the SMA-MSW solution which may, in some cases, be the best combined solution. On the other hand the LMA-MSW solution can easily survive as the best overall solution, although its size is generally reduced when compared to fits to the solar data only.Comment: 31 pages, 32 eps figures; 5 pages, 5 eps figures addendum in v2, discussing the recent SNO NC data and changes in SN paramete

    New variables of separation for particular case of the Kowalevski top

    Full text link
    We discuss the polynomial bi-Hamiltonian structures for the Kowalevski top in special case of zero square integral. An explicit procedure to find variables of separation and separation relations is considered in detail.Comment: 11 pages, LaTeX with Ams font
    corecore