11 research outputs found

    Novel measurement of the neutron magnetic form factor from A=3 mirror nuclei

    Get PDF
    The electromagnetic form factors of the proton and neutron encode information on the spatial structure of their charge and magnetization distributions. While measurements of the proton are relatively straightforward, the lack of a free neutron target makes measurements of the neutron's electromagnetic structure more challenging and more sensitive to experimental or model-dependent uncertainties. Various experiments have attempted to extract the neutron form factors from scattering from the neutron in deuterium, with different techniques providing different, and sometimes large, systematic uncertainties. We present results from a novel measurement of the neutron magnetic form factor using quasielastic scattering from the mirror nuclei ^{3}H and ^{3}He, where the nuclear effects are larger than for deuterium but expected to largely cancel in the cross-section ratios. We extracted values of the neutron magnetic form factor for low-to-modest momentum transfer, 0.6<Q^{2}<2.9  GeV^{2}, where existing measurements give inconsistent results. The precision and Q^{2} range of these data allow for a better understanding of the current world's data and suggest a path toward further improvement of our overall understanding of the neutron's magnetic form factor

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    Precise Beam Energy Determination for Hall A after the CEBAF 12 GeV Upgrade

    No full text
    Precise and accurate measurements of the beam energy delivered to the experimental halls at the Thomas Jefferson Accelerator Facility (Jefferson Lab) is required by many experiments for proper data analysis and physics event reconstruction. During the 6 GeV era of Jefferson Lab, the energy delivered to experimental Hall A was determined to 2E-4 dE/E with multiple measurements; but after the machine was upgraded to 12 GeV, the accelerator's beam energy calculations needed to be re-calibrated. In order to link the 6 GeV era calibrations to the 12 GeV era, the Hall A ARC energy measurement system was left unmodified. After the upgrade, this system was used to determine the absolute beam energy being delivered into Hall A and find the new calibrations for the main machine. To ensure the validity of these results, they have been cross checked using elastic scattering data as well as spin precession data

    A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12

    No full text
    International audienceOne of the most surprising discoveries made at Jefferson Lab has been the discrepancy in the determinations of the proton's form factor ratio μpGEp/GMp\mu_p G_E^p/G_M^p between unpolarized cross section measurements and the polarization transfer technique. Over two decades later, the discrepancy not only persists but has been confirmed at higher momentum transfers now accessible in the 12-GeV era. The leading hypothesis for the cause of this discrepancy, a non-negligible contribution from hard two-photon exchange, has neither been conclusively proven or disproven. This state of uncertainty not only clouds our knowledge of one-dimensional nucleon structure but also poses a major concern for our field's efforts to map out the three-dimensional nuclear structure. A better understanding of multi-photon exchange over a wide phase space is needed. We propose making comprehensive measurements of two-photon exchange over a wide range in momentum transfer and scattering angle using the CLAS12 detector. Specifically, we will measure the ratio of positron-proton to electron-proton elastic scattering cross sections, using the proposed positron beam upgrade for CEBAF. The experiment will use 2.2, 4.4, and 6.6 GeV lepton beams incident on the standard CLAS12 unpolarized hydrogen target. Data will be collected by the CLAS12 detector in its standard configuration, except for a modified trigger to allow the recording of events with beam leptons scattered into the CLAS12 central detector. The sign of the beam charge, as well as the polarity of the CLAS12 solenoid and toroid, will be reversed several times in order to suppress systematics associated with local detector efficiency and time-dependent detector performance. The proposed high-precision determination of two-photon effects will be..

    The Present and Future of QCD

    No full text
    International audienceThis White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015 LRP (LRP15) and identified key questions and plausible paths to obtaining answers to those questions, defining priorities for our research over the coming decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (~ 5 years) and longer term (5-10 years and beyond) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential and maintain United States leadership in QCD physics worldwide. This White Paper is organized as follows: In the Executive Summary, we detail the Recommendations and Initiatives that were presented and discussed at the Town Meeting, and their supporting rationales. Section 2 highlights major progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides an overview of the physics motivations and goals associated with the EIC. Section 5 is devoted to the workforce development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing in Section 6. Section 7 describes the national need for nuclear data science and the relevance to QCD research

    The present and future of QCD

    No full text
    International audienceThis White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    The Present and Future of QCD

    Get PDF
    This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015 LRP (LRP15) and identified key questions and plausible paths to obtaining answers to those questions, defining priorities for our research over the coming decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (~ 5 years) and longer term (5-10 years and beyond) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential and maintain United States leadership in QCD physics worldwide. This White Paper is organized as follows: In the Executive Summary, we detail the Recommendations and Initiatives that were presented and discussed at the Town Meeting, and their supporting rationales. Section 2 highlights major progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides an overview of the physics motivations and goals associated with the EIC. Section 5 is devoted to the workforce development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing in Section 6. Section 7 describes the national need for nuclear data science and the relevance to QCD research
    corecore