985 research outputs found

    Avalanches and the Renormalization Group for Pinned Charge-Density Waves

    Get PDF
    The critical behavior of charge-density waves (CDWs) in the pinned phase is studied for applied fields increasing toward the threshold field, using recently developed renormalization group techniques and simulations of automaton models. Despite the existence of many metastable states in the pinned state of the CDW, the renormalization group treatment can be used successfully to find the divergences in the polarization and the correlation length, and, to first order in an ϵ=4−d\epsilon = 4-d expansion, the diverging time scale. The automaton models studied are a charge-density wave model and a ``sandpile'' model with periodic boundary conditions; these models are found to have the same critical behavior, associated with diverging avalanche sizes. The numerical results for the polarization and the diverging length and time scales in dimensions d=2,3d=2,3 are in agreement with the analytical treatment. These results clarify the connections between the behaviour above and below threshold: the characteristic correlation lengths on both sides of the transition diverge with different exponents. The scaling of the distribution of avalanches on the approach to threshold is found to be different for automaton and continuous-variable models.Comment: 29 pages, 11 postscript figures included, REVTEX v3.0 (dvi and PS files also available by anonymous ftp from external.nj.nec.com in directory /pub/alan/cdwfigs

    Electron - nuclear recoil discrimination by pulse shape analysis

    Full text link
    In the framework of the ``ULTIMA'' project, we use ultra cold superfluid 3He bolometers for the direct detection of single particle events, aimed for a future use as a dark matter detector. One parameter of the pulse shape observed after such an event is the thermalization time constant. Until now it was believed that this parameter only depends on geometrical factors and superfluid 3He properties, and that it is independent of the nature of the incident particles. In this report we show new results which demonstrate that a difference for muon- and neutron events, as well as events simulated by heater pulses exist. The possibility to use this difference for event discrimination in a future dark matter detector will be discussed.Comment: Proseedings of QFS 2007, Kazan, Russia; 8 pages, 4 figures. Submited to J. Low Temp. Phy

    Persistence of a Continuous Stochastic Process with Discrete-Time Sampling: Non-Markov Processes

    Full text link
    We consider the problem of `discrete-time persistence', which deals with the zero-crossings of a continuous stochastic process, X(T), measured at discrete times, T = n(\Delta T). For a Gaussian Stationary Process the persistence (no crossing) probability decays as exp(-\theta_D T) = [\rho(a)]^n for large n, where a = \exp[-(\Delta T)/2], and the discrete persistence exponent, \theta_D, is given by \theta_D = \ln(\rho)/2\ln(a). Using the `Independent Interval Approximation', we show how \theta_D varies with (\Delta T) for small (\Delta T) and conclude that experimental measurements of persistence for smooth processes, such as diffusion, are less sensitive to the effects of discrete sampling than measurements of a randomly accelerated particle or random walker. We extend the matrix method developed by us previously [Phys. Rev. E 64, 015151(R) (2001)] to determine \rho(a) for a two-dimensional random walk and the one-dimensional random acceleration problem. We also consider `alternating persistence', which corresponds to a < 0, and calculate \rho(a) for this case.Comment: 14 pages plus 8 figure

    Coupled Ripplon-Plasmon Modes in a Multielectron Bubble

    Full text link
    In multielectron bubbles, the electrons form an effectively two-dimensional layer at the inner surface of the bubble in helium. The modes of oscillation of the bubble surface (the ripplons) are influenced by the charge redistribution of the electrons along the surface. The dispersion relation for these charge redistribution modes (`longitudinal plasmons') is derived and the coupling of these modes to the ripplons is analysed. We find that the ripplon-plasmon coupling in a multielectron bubble differs markedly from that of electrons a flat helium surface. An equation is presented relating the spherical harmonic components of the charge redistribution to those of the shape deformation of the bubble.Comment: 8 pages, 1 figure, E-mail addresses: [email protected], [email protected], [email protected], [email protected]

    Exact Asymptotic Results for Persistence in the Sinai Model with Arbitrary Drift

    Full text link
    We obtain exact asymptotic results for the disorder averaged persistence of a Brownian particle moving in a biased Sinai landscape. We employ a new method that maps the problem of computing the persistence to the problem of finding the energy spectrum of a single particle quantum Hamiltonian, which can be subsequently found. Our method allows us analytical access to arbitrary values of the drift (bias), thus going beyond the previous methods which provide results only in the limit of vanishing drift. We show that on varying the drift, the persistence displays a variety of rich asymptotic behaviors including, in particular, interesting qualitative changes at some special values of the drift.Comment: 17 pages, two eps figures (included

    Persistence in a Stationary Time-series

    Full text link
    We study the persistence in a class of continuous stochastic processes that are stationary only under integer shifts of time. We show that under certain conditions, the persistence of such a continuous process reduces to the persistence of a corresponding discrete sequence obtained from the measurement of the process only at integer times. We then construct a specific sequence for which the persistence can be computed even though the sequence is non-Markovian. We show that this may be considered as a limiting case of persistence in the diffusion process on a hierarchical lattice.Comment: 8 pages revte

    Nonequilibrium dynamics of random field Ising spin chains: exact results via real space RG

    Full text link
    Non-equilibrium dynamics of classical random Ising spin chains are studied using asymptotically exact real space renormalization group. Specifically the random field Ising model with and without an applied field (and the Ising spin glass (SG) in a field), in the universal regime of a large Imry Ma length so that coarsening of domains after a quench occurs over large scales. Two types of domain walls diffuse in opposite Sinai random potentials and mutually annihilate. The domain walls converge rapidly to a set of system-specific time-dependent positions {\it independent of the initial conditions}. We obtain the time dependent energy, magnetization and domain size distribution (statistically independent). The equilibrium limits agree with known exact results. We obtain exact scaling forms for two-point equal time correlation and two-time autocorrelations. We also compute the persistence properties of a single spin, of local magnetization, and of domains. The analogous quantities for the spin glass are obtained. We compute the two-point two-time correlation which can be measured by experiments on spin-glass like systems. Thermal fluctuations are found to be dominated by rare events; all moments of truncated correlations are computed. The response to a small field applied after waiting time twt_w, as measured in aging experiments, and the fluctuation-dissipation ratio X(t,tw)X(t,t_w) are computed. For (t−tw)∼twα^(t-t_w) \sim t_w^{\hat{\alpha}}, α^<1\hat{\alpha} <1, it equals its equilibrium value X=1, though time translational invariance fails. It exhibits for t−tw∼twt-t_w \sim t_w aging regime with non-trivial X=X(t/tw)≠1X=X(t/t_w) \neq 1, different from mean field.Comment: 55 pages, 9 figures, revte

    Persistence of a particle in the Matheron-de Marsily velocity field

    Full text link
    We show that the longitudinal position x(t)x(t) of a particle in a (d+1)(d+1)-dimensional layered random velocity field (the Matheron-de Marsily model) can be identified as a fractional Brownian motion (fBm) characterized by a variable Hurst exponent H(d)=1−d/4H(d)=1-d/4 for d2d2. The fBm becomes marginal at d=2d=2. Moreover, using the known first-passage properties of fBm we prove analytically that the disorder averaged persistence (the probability of no zero crossing of the process x(t)x(t) upto time tt) has a power law decay for large tt with an exponent θ=d/4\theta=d/4 for d<2d<2 and θ=1/2\theta=1/2 for d≥2d\geq 2 (with logarithmic correction at d=2d=2), results that were earlier derived by Redner based on heuristic arguments and supported by numerical simulations (S. Redner, Phys. Rev. E {\bf 56}, 4967 (1997)).Comment: 4 pages Revtex, 1 .eps figure included, to appear in PRE Rapid Communicatio

    Continuous Percolation Phase Transitions of Two-dimensional Lattice Networks under a Generalized Achlioptas Process

    Full text link
    The percolation phase transitions of two-dimensional lattice networks under a generalized Achlioptas process (GAP) are investigated. During the GAP, two edges are chosen randomly from the lattice and the edge with minimum product of the two connecting cluster sizes is taken as the next occupied bond with a probability pp. At p=0.5p=0.5, the GAP becomes the random growth model and leads to the minority product rule at p=1p=1. Using the finite-size scaling analysis, we find that the percolation phase transitions of these systems with 0.5≤p≤10.5 \le p \le 1 are always continuous and their critical exponents depend on pp. Therefore, the universality class of the critical phenomena in two-dimensional lattice networks under the GAP is related to the probability parameter pp in addition.Comment: 7 pages, 14 figures, accepted for publication in Eur. Phys. J.

    Cluster persistence in one-dimensional diffusion--limited cluster--cluster aggregation

    Get PDF
    The persistence probability, PC(t)P_C(t), of a cluster to remain unaggregated is studied in cluster-cluster aggregation, when the diffusion coefficient of a cluster depends on its size ss as D(s)∼sγD(s) \sim s^\gamma. In the mean-field the problem maps to the survival of three annihilating random walkers with time-dependent noise correlations. For γ≥0\gamma \ge 0 the motion of persistent clusters becomes asymptotically irrelevant and the mean-field theory provides a correct description. For γ<0\gamma < 0 the spatial fluctuations remain relevant and the persistence probability is overestimated by the random walk theory. The decay of persistence determines the small size tail of the cluster size distribution. For 0<γ<20 < \gamma < 2 the distribution is flat and, surprisingly, independent of γ\gamma.Comment: 11 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
    • …
    corecore