119 research outputs found

    Broken Symmetries in the Reconstruction of v=1 Quantum Hall Edges

    Full text link
    Spin-polarized reconstruction of the v=1 quantum Hall edge is accompanied by a spatial modulation of the charge density along the edge. We find that this is also the case for finite quantum Hall droplets: current spin density functional calculations show that the so-called Chamon-Wen edge forms a ring of apparently localized electrons around the maximum density droplet (MDD). The boundaries of these different phases qualitatively agree with recent experiments. For very soft confinement, Chern-Simons Ginzburg-Landau theory indicates formation of a non-translational invariant edge with vortices (holes) trapped in the edge region.Comment: Proceedings of the EP2DS, Ottawa (1999) (submitted to Physica E

    Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases

    Get PDF
    We show that strongly interacting multicomponent gases in one dimension realize an effective spin chain, offering an alternative simple scenario for the study of one-dimensional (1D) quantum magnetism in cold gases in the absence of an optical lattice. The spin-chain model allows for an intuitive understanding of recent experiments and for a simple calculation of relevant observables. We analyze the adiabatic preparation of antiferromagnetic and ferromagnetic ground states, and show that many-body spin states may be efficiently probed in tunneling experiments. The spin-chain model is valid for more than two components, opening the possibility of realizing SU(N) quantum magnetism in strongly interacting 1D alkaline-earth-metal or ytterbium Fermi gases. © 2014 American Physical Society.DFG/EXC/QUESTGerman-Israeli foundationSwiss SNFNCCR Quantum Science and TechnologySwedish Research CouncilLund Universit

    Rotational and vibrational spectra of quantum rings

    Full text link
    One can confine the two-dimensional electron gas in semiconductor heterostructures electrostatically or by etching techniques such that a small electron island is formed. These man-made ``artificial atoms'' provide the experimental realization of a text-book example of many-particle physics: a finite number of quantum particles in a trap. Much effort was spent on making such "quantum dots" smaller and going from the mesoscopic to the quantum regime. Far-reaching analogies to the physics of atoms, nuclei or metal clusters were obvious from the very beginning: The concepts of shell structure and Hund's rules were found to apply -- just as in real atoms! In this Letter, we report the discovery that electrons confined in ring-shaped quantum dots form rather rigid molecules with antiferromagnetic order in the ground state. This can be seen best from an analysis of the rotational and vibrational excitations

    Symmetry Constraints and the Electronic Structures of a Quantum Dot with Thirteen Electrons

    Full text link
    The symmetry constraints imposing on the quantum states of a dot with 13 electrons has been investigated. Based on this study, the favorable structures (FSs) of each state has been identified. Numerical calculations have been performed to inspect the role played by the FSs. It was found that, if a first-state has a remarkably competitive FS, this FS would be pursued and the state would be crystal-like and have a specific core-ring structure associated with the FS. The magic numbers are found to be closely related to the FSs.Comment: 13 pages, 5 figure

    Electron-hole bilayer quantum dots: Phase diagram and exciton localization

    Full text link
    We studied a vertical ``quantum dot molecule'', where one of the dots is occupied with electrons and the other with holes. We find that different phases occur in the ground state, depending on the carrier density and the interdot distance. When the system is dominated by shell structure, orbital degeneracies can be removed either by Hund's rule, or by Jahn-Teller deformation. Both mechanisms can lead to a maximum of the addition energy at mid-shell. At low densities and large interdot distances, bound electron-hole pairs are formed.Comment: 10 pages, 3 figure

    Current-spin-density functional study of persistent currents in quantum rings

    Full text link
    We present a numerical study of persistent currents in quantum rings using current spin density functional theory (CSDFT). This formalism allows for a systematic study of the joint effects of both spin, interactions and impurities for realistic systems. It is illustrated that CSDFT is suitable for describing the physical effects related to Aharonov-Bohm phases by comparing energy spectra of impurity-free rings to existing exact diagonalization and experimental results. Further, we examine the effects of a symmetry-breaking impurity potential on the density and current characteristics of the system and propose that narrowing the confining potential at fixed impurity potential will suppress the persistent current in a characteristic way.Comment: 7 pages REVTeX, including 8 postscript figure

    Roto-vibrational spectrum and Wigner crystallization in two-electron parabolic quantum dots

    Full text link
    We provide a quantitative determination of the crystallization onset for two electrons in a parabolic two-dimensional confinement. This system is shown to be well described by a roto-vibrational model, Wigner crystallization occurring when the rotational motion gets decoupled from the vibrational one. The Wigner molecule thus formed is characterized by its moment of inertia and by the corresponding sequence of rotational excited states. The role of a vertical magnetic field is also considered. Additional support to the analysis is given by the Hartree-Fock phase diagram for the ground state and by the random-phase approximation for the moment of inertia and vibron excitations.Comment: 10 pages, 8 figures, replaced by the published versio

    Rectangular quantum dots in high magnetic fields

    Get PDF
    We use density-functional methods to study the effects of an external magnetic field on two-dimensional quantum dots with a rectangular hard-wall confining potential. The increasing magnetic field leads to spin polarization and formation of a highly inhomogeneous maximum-density droplet at the predicted magnetic field strength. At higher fields, we find an oscillating behavior in the electron density and in the magnetization of the dot. We identify a rich variety of phenomena behind the periodicity and analyze the complicated many-electron dynamics, which is shown to be highly dependent on the shape of the quantum dot.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Broken Symmetry in Density-Functional Theory: Analysis and Cure

    Get PDF
    We present a detailed analysis of the broken-symmetry mean-field solutions using a four-electron rectangular quantum dot as a model system. Comparisons of the density-functional theory predictions with the exact ones show that the symmetry breaking results from the single-configuration wave function used in the mean-field approach. As a general cure we present a scheme that systematically incorporates several configurations into the density-functional theory and restores the symmetry. This cure is easily applicable to any density-functional approach.Comment: 4 pages, 4 figures, submitted to PR

    Temperature dependence of the ``0.7'' 2(e^2)/h quasi plateau in strongly confined quantum point contacts

    Full text link
    We present new results of the ``0.7'' 2(e^2)/h structure or quasi plateau in some of the most strongly confined point contacts so far reported. This strong confinement is obtained by a combination of shallow etching and metal gate deposition on modulation doped GaAs/GaAlAs heterostructures. The resulting subband separations are up to 20 meV, and as a consequence the quantized conductance can be followed at temperatures up to 30 K, an order of magnitude higher than in conventional split gate devices. We observe pronounced quasi plateaus at several of the lowest conductance steps all the way from their formation around 1 K to 30 K, where the entire conductance quantization is smeared out thermally. We study the deviation of the conductance from ideal integer quantization as a function of temperature, and we find an activated behavior, exp(-T_a/T), with a density dependent activation temperature T_a of the order of 2 K. We analyze our results in terms of a simple theoretical model involving scattering against plasmons in the constriction.Comment: RevTex (4 pages) including 2 postscript figures. To appear in Physica B, 199
    • …
    corecore