157 research outputs found
Proteinlike behavior of a spin system near the transition between ferromagnet and spin glass
A simple spin system is studied as an analog for proteins. We investigate how
the introduction of randomness and frustration into the system effects the
designability and stability of ground state configurations. We observe that the
spin system exhibits protein-like behavior in the vicinity of the transition
between ferromagnet and spin glass.
Our results illuminate some guiding principles in protein evolution.Comment: 12 pages, 4 figure
Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors
We consider the real part of the conductivity, \sigma_1(\omega), arising from
classical phase fluctuations in a model for high-T_c superconductors. We show
that the frequency integral of that conductivity, \int_0^\infty \sigma_1
d\omega, is non-zero below the superconducting transition temperature ,
provided there is some quenched disorder in the system. Furthermore, for a
fixed amount of quenched disorder, this integral at low temperatures is
proportional to the zero-temperature superfluid density, in agreement with
experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped
phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.
Simulations of neutron background in a time projection chamber relevant to dark matter searches
Presented here are results of simulations of neutron background performed for
a time projection chamber acting as a particle dark matter detector in an
underground laboratory. The investigated background includes neutrons from rock
and detector components, generated via spontaneous fission and (alpha, n)
reactions, as well as those due to cosmic-ray muons. Neutrons were propagated
to the sensitive volume of the detector and the nuclear recoil spectra were
calculated. Methods of neutron background suppression were also examined and
limitations to the sensitivity of a gaseous dark matter detector are discussed.
Results indicate that neutrons should not limit sensitivity to WIMP-nucleon
interactions down to a level of (1 - 3) x 10^{-8} pb in a 10 kg detector.Comment: 27 pages (total, including 3 tables and 11 figures). Accepted for
publication in Nuclear Instruments and Methods in Physics Research - Section
Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models
Kinetically constrained models (KCMs) have been used to study and understand
the origin of glassy dynamics. Despite having trivial thermodynamic properties,
their dynamics slows down dramatically at low temperatures while displaying
dynamical heterogeneity as seen in glass forming supercooled liquids. This
dynamics has its origin in an ergodic-nonergodic first-order phase transition
between phases of distinct dynamical "activity". This is a "space-time"
transition as it corresponds to a singular change in ensembles of trajectories
of the dynamics rather than ensembles of configurations. Here we extend these
ideas to driven glassy systems by considering KCMs driven into non-equilibrium
steady states through non-conservative forces. By classifying trajectories
through their entropy production we prove that driven KCMs also display an
analogous first-order space-time transition between dynamical phases of finite
and vanishing entropy production. We also discuss how trajectories with rare
values of entropy production can be realized as typical trajectories of a
mapped system with modified forces
A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade
We provide a framework for analyzing the problem of interacting electrons in
a ballistic quantum dot with chaotic boundary conditions within an energy
(the Thouless energy) of the Fermi energy. Within this window we show that the
interactions can be characterized by Landau Fermi liquid parameters. When ,
the dimensionless conductance of the dot, is large, we find that the disordered
interacting problem can be solved in a saddle-point approximation which becomes
exact as (as in a large-N theory). The infinite theory shows a
transition to a strong-coupling phase characterized by the same order parameter
as in the Pomeranchuk transition in clean systems (a spontaneous
interaction-induced Fermi surface distortion), but smeared and pinned by
disorder. At finite , the two phases and critical point evolve into three
regimes in the plane -- weak- and strong-coupling regimes separated
by crossover lines from a quantum-critical regime controlled by the quantum
critical point. In the strong-coupling and quantum-critical regions, the
quasiparticle acquires a width of the same order as the level spacing
within a few 's of the Fermi energy due to coupling to collective
excitations. In the strong coupling regime if is odd, the dot will (if
isolated) cross over from the orthogonal to unitary ensemble for an
exponentially small external flux, or will (if strongly coupled to leads) break
time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we
are treating charge-channel instabilities in spinful systems, leaving
spin-channel instabilities for future work. No substantive results are
change
Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium
Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion
'Duck to water' or 'fish out of water'? Diversity in the experience of negotiating the transition to university
Winstone and Hulme present a critical discussion of the notion of transition to university. They argue that the common emphasis on the challenging nature of the transition fails to acknowledge the diversity in students’ experiences; for some students, the liminality and discomfort experienced during this critical period in their educational journey can be a transformational and empowering rite of passage. Rather than homogenising students’ experiences, Winstone and Hulme argue that it is beneficial to explore the transition experience through the lens of students’ expectations and subsequent experiences and to view the transition to university as part of a trajectory of transition experience within a student’s educational journey. The chapter also presents practical suggestions for engaging multiple student voices in understanding and facilitating positive transition experiences
- …