127 research outputs found

    Ionization of Infalling Gas

    Full text link
    H-alpha emission from neutral halo clouds probes the radiation and hydrodynamic conditions in the halo. Armed with such measurements, we can explore how radiation escapes from the Galactic plane and how infalling gas can survive a trip through the halo. The Wisconsin H-Alpha Mapper (WHAM) is one of the most sensitive instruments for detecting and mapping optical emission from the ISM. Here, we present recent results exploring the ionization of two infallling high-velocity complexes. First, we report on our progress mapping H-alpha emission covering the full extent of Complex A. Intensities are faint (<100 mR; EM <0.2 pc cm^-6 but correlate on the sky and in velocity with 21-cm emission. Second, we explore the ionized component of some Anti-Center Complex clouds studied by Peek et al. (2007) that show dynamic shaping from interaction with the Galactic halo.Comment: 4 pages, 2 figures; to appear in proceedings of "The Role of Disk-Halo Interaction in Galaxy Evolution: Outflow vs Infall?" held in Espinho, Portugal during 2008 Augus

    Is the Sun Embedded in a Typical Interstellar Cloud?

    Full text link
    The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at International Space Sciences Institute, October 200

    A new general glucose homeostatic model using a proportional-integral-derivative controller

    Get PDF
    The glucose-insulin system is a challenging process to model due to the feedback mechanisms present, hence the implementation of a model-based approach to the system is an on-going and challenging research area. A new approach is proposed here which provides an effective way of characterising glycaemic regulation. The resulting model is built on the premise that there are three phases of insulin secretion, similar to those seen in a proportional-integral-derivative (PID) type controller used in engineering control problems. The model relates these three phases to a biological understanding of the system, as well as the logical premise that the homeostatic mechanisms will maintain very tight control of the system. It includes states for insulin, glucose, insulin action and a state to simulate an integral function of glucose. Structural identifiability analysis was performed on the model to determine whether a unique set of parameter values could be identified from the available observations, which should permit meaningful conclusions to be drawn from parameter estimation. Although two parameters - glucose production rate and the proportional control coefficient - were found to be unidentifiable, the former is not a concern as this is known to be impossible to measure without a tracer experiment, and the latter can be easily estimated from other means. Subsequent parameter estimation using Intravenous Glucose Tolerance Test (IVGTT) and hyperglycaemic clamp data was performed and subsequent model simulations have shown good agreement with respect to these real data
    corecore