240 research outputs found

    Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes

    Get PDF
    We show that the lifetime of ultracold ground-state 87Rb133Cs molecules in an optical trap is limited by fast optical excitation of long-lived two-body collision complexes. We partially suppress this loss mechanism by applying square-wave modulation to the trap intensity, such that the molecules spend 75% of each modulation cycle in the dark. By varying the modulation frequency, we show that the lifetime of the collision complex is 0.53 0.06 ms in the dark. We find that the rate of optical excitation of the collision complex is 3þ4 −2 × 103 W−1 cm2 s−1 for λ ¼ 1550 nm, leading to a lifetime of < 100 ns for typical trap intensities. These results explain the two-body loss observed in experiments on nonreactive bialkali molecules

    Forward Modeling of Space-borne Gravitational Wave Detectors

    Full text link
    Planning is underway for several space-borne gravitational wave observatories to be built in the next ten to twenty years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction.Comment: 14 Pages, 14 Figures, RevTex

    Realizing bright-matter-wave-soliton collisions with controlled relative phase

    Get PDF
    We propose a method to split the ground state of an attractively interacting atomic Bose-Einstein condensate into two bright solitary waves with controlled relative phase and velocity. We analyze the stability of these waves against their subsequent recollisions at the center of a cylindrically symmetric, prolate harmonic trap as a function of relative phase, velocity, and trap anisotropy. We show that the collisional stability is strongly dependent on relative phase at low velocity, and we identify previously unobserved oscillations in the collisional stability as a function of the trap anisotropy. An experimental implementation of our method would determine the validity of the mean-field description of bright solitary waves and could prove to be an important step toward atom interferometry experiments involving bright solitary waves

    Robust storage qubits in ultracold polar molecules

    Get PDF
    Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and storing quantum information. However, it is important to understand all sources of decoherence for these qubits, and then eliminate them, to reach the longest possible coherence times. Here we fully characterize the dominant mechanisms of decoherence for a storage qubit in an optically trapped ultracold gas of RbCs molecules using high-resolution Ramsey spectroscopy. Guided by a detailed understanding of the hyperfine structure of the molecule, we tune the magnetic field to where a pair of hyperfine states have the same magnetic moment. These states form a qubit, which is insensitive to variations in magnetic field. Our experiments reveal a subtle differential tensor light shift between the states, caused by weak mixing of rotational states. We demonstrate how this light shift can be eliminated by setting the angle between the linearly polarized trap light and the applied magnetic field to a magic angle of arccos(1/3–√)≈55∘. This leads to a coherence time exceeding 5.6 s at the 95% confidence level

    Feshbach resonances, molecular bound states, and prospects of ultracold-molecule formation in mixtures of ultracold K and Cs

    Get PDF
    We consider the possibilities for producing ultracold mixtures of K and Cs and forming KCs molecules by magnetoassociation. We carry out coupled-channel calculations of the interspecies scattering length for KCs39, KCs41, and KCs40 and characterize Feshbach resonances due to s-wave and d-wave bound states, with widths ranging from below 1 nG to 5 G. We also calculate the corresponding bound-state energies as a function of magnetic field. We give a general discussion of the combinations of intraspecies and interspecies scattering lengths needed to form low-temperature atomic mixtures and condensates and identify promising strategies for cooling and molecule formation for all three isotopic combinations of K and Cs

    Repeated output coupling of ultracold Feshbach molecules from a Cs BEC

    Get PDF
    Paper Part of Focus on New Frontiers of Cold Molecules Research We investigate magnetoassociation of ultracold Feshbach molecules from a Bose-Einstein condensate of Cs atoms and explore the spectrum of weakly bound molecular states close to the atomic threshold. By exploiting the variation of magnetic field experienced by a molecular cloud falling in the presence of a magnetic field gradient, we demonstrate the repeated output coupling of molecules from a single atomic cloud using a Feshbach resonance at 19.89 G. Using this method we are able to produce up to 24 separate pulses of molecules from a single atomic condensate, with a molecular pulse created every 7.2 ms. Furthermore, by careful control of the magnetic bias field and gradient we are able to utilise an avoided crossing in the bound state spectrum at 13.3 G to demonstrate exquisite control over the dynamics of the molecular clouds

    Temperature-dependent relaxation times in a trapped Bose-condensed gas

    Full text link
    Explicit expressions for all the transport coefficients have recently been found for a trapped Bose condensed gas at finite temperatures. These transport coefficients are used to define the characteristic relaxation times, which determine the crossover between the mean-field collisionless and the two-fluid hydrodynamic regime. These relaxation times are evaluated as a function of the position in the trap potential. We show that all the relaxation times are dominated by the collisions between the condensate and the non-condensate atoms, and are much smaller than the standard classical collision time used in most of the current literature. The 1998 MIT study of the collective modes at finite temperature is shown to have been well within the two-fluid hydrodynamic regime.Comment: 4 pages, 3 figures, to be published in Phys. Rev.

    Observation of magnetic Feshbach resonances between Cs and 173Yb

    Get PDF
    We report the observation of magnetic Feshbach resonances between 173 Yb and 133 Cs . In a mixture of Cs atoms prepared in the ( f = 3 , m f = 3 ) state and unpolarized fermionic 173 Yb , we observe resonant atom loss due to two sets of magnetic Feshbach resonances around 622 and 702 G. Resonances for individual Yb nuclear spin components m i , Yb are split by its interaction with the Cs electronic spin, which also provides the main coupling mechanism for the observed resonances. The observed splittings and relative resonance strengths are in good agreement with theoretical predictions from coupled-channel calculations

    Generating Mesoscopic Bell States via Collisions of Distinguishable Quantum Bright Solitons

    Get PDF
    We investigate numerically the collisions of two distinguishable quantum matter-wave bright solitons in a one-dimensional harmonic trap. We show that such collisions can be used to generate mesoscopic Bell states that can reliably be distinguished from statistical mixtures. Calculation of the relevant s-wave scattering lengths predicts that such states could potentially be realized in quantum-degenerate mixtures of Rb85 and Cs133. In addition to fully quantum simulations for two distinguishable two-particle solitons, we use a mean-field description supplemented by a stochastic treatment of quantum fluctuations in the soliton’s center of mass: we demonstrate the validity of this approach by comparison to a mathematically rigorous effective potential treatment of the quantum many-particle problem

    A simple, versatile laser system for the creation of ultracold ground state molecules

    Get PDF
    Paper Part of Focus on New Frontiers of Cold Molecules Research A narrow-linewidth, dual-wavelength laser system is vital for the creation of ultracold ground state molecules via stimulated Raman adiabatic passage (STIRAP) from a weakly bound Feshbach state. Here we describe how a relatively simple apparatus consisting of a single fixed-length optical cavity can be used to narrow the linewidth of the two different wavelength lasers required for STIRAP simultaneously. The frequency of each of these lasers is referenced to the cavity and is continuously tunable away from the cavity modes through the use of non-resonant electro-optic modulators. Self-heterodyne measurements suggest the laser linewidths are reduced to several 100 Hz. In the context of 87Rb133Cs molecules produced via magnetoassociation on a Feshbach resonance, we demonstrate the performance of the laser system through one- and two-photon molecular spectroscopy. Finally, we demonstrate transfer of the molecules to the rovibrational ground state using STIRAP
    • …
    corecore