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Quantum states with long-lived coherence are essential for quantum computation, simulation
and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational
ground state are an excellent candidate for encoding and storing quantum information. However, it
is important to understand all sources of decoherence for these qubits, and then eliminate them, in
order to reach the longest possible coherence times. Here, we fully characterise the dominant mech-
anisms for decoherence of a storage qubit in an optically trapped ultracold gas of RbCs molecules
using high-resolution Ramsey spectroscopy. Guided by a detailed understanding of the hyperfine
structure of the molecule, we tune the magnetic field to where a pair of hyperfine states have the
same magnetic moment. These states form a qubit, which is insensitive to variations in magnetic
field. Our experiments reveal an unexpected differential tensor light shift between the states, caused
by weak mixing of rotational states. We demonstrate how this light shift can be eliminated by set-
ting the angle between the linearly polarised trap light and the applied magnetic field to a magic
angle of arccos (1/

√
3) ≈ 55◦. This leads to a coherence time exceeding 6.9 s (90% confidence level).

Our results unlock the potential of ultracold molecules as a platform for quantum computation.

Quantum coherence is a key resource [1], underpin-
ning many prominent applications in quantum science
and technology. These range from precision tests of fun-
damental physics [2], quantum metrology [3] and state-of-
the-art atomic clocks [4] to quantum information process-
ing [5], quantum simulation [6] and quantum thermody-
namics [7]. Understanding the limits on quantum coher-
ence is therefore of fundamental interest and technologi-
cal importance. Cooling matter into the ultracold regime
leads to long interrogation times coupled with exquisite
experimental control, enabling quantum coherence to be
investigated with incomparable precision.

Ultracold polar molecules [8, 9] combine the rich in-
ternal structure associated with molecular vibration and
rotation with access to controllable long-range dipole-
dipole interactions. These properties have stimulated
a diverse range of proposed applications spanning the
fields of quantum computation [10–14], quantum simula-
tion [15–18], quantum-state controlled chemistry [19–21],
and precision tests of fundamental physics [22–24]. To re-
alise many of these applications, we need to understand
how to engineer long-lived quantum coherence in ultra-
cold polar molecules.

In this work, we use high-precision Ramsey spec-
troscopy to investigate the sources of decoherence in an
optically trapped ultracold gas of 87Rb133Cs molecules
(hereafter RbCs). We focus on superpositions of nuclear
spin states of the singlet rovibrational ground state. Such
superpositions are expected to be relatively insensitive
to magnetic dephasing, as the magnetic moments of the
nuclear spins are small in comparison to electronic mag-
netic moments. Furthermore, the nuclear spin states are
expected to experience near-identical AC Stark shifts in
an optical trap, so that dephasing associated with the

nonuniform optical potential is also suppressed. These
properties point to the possibility of long-lived coher-
ence and make the nuclear spin states of ultracold polar
molecules excellent candidates for robust storage qubits
in quantum computing architectures [11, 12, 25]. In
such proposals, gate operations may be performed us-
ing dipolar-exchange interactions [15, 17] following mi-
crowave excitation to an excited rotational state, while
single-qubit rotations can be performed using two-photon
microwave pulses [1, 2, 26, 27]. Here, we demonstrate co-
herence times exceeding 6.9 s (90% confidence level) for
the storage qubit, paving the way for the use of ultracold
molecules as a platform for quantum computation.

To begin, we seek to identify pairs of nuclear spin
states with identical magnetic moments that connect to
a common excited rotational state, by calculating the ro-
tational and hyperfine structure of the RbCs molecule in
externally applied magnetic and optical fields [1, 2, 6, 31].
We construct the Hamiltonian (see Methods) in a fully
uncoupled basis set |N,MN 〉 |iRb,mRb〉 |iCs,mCs〉, where
N represents the angular momentum of the molecule
with its projection along the quantisation axis MN , and
iRb = 3/2, iCs = 7/2 denote the nuclear spins of Rb and
Cs respectively, with their projections mRb,mCs. How-
ever, typical magnetic fields in our experiments are not
high enough to decouple the rotational and nuclear an-
gular momenta. Even when the laser is polarised along
the magnetic field, the only good quantum number that
can be used to describe a given hyperfine sublevel is
MF = MN +mRb +mCs. As this is not sufficient to iden-
tify a given hyperfine state uniquely, we label the states
by (N,MF )k where k is an index counting up the states in
order of increasing energy, such that k = 0 is the lowest-
energy state for given values of N and MF . There are 32
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FIG. 1. Effect of magnetic fields on the coherence of the storage qubit. (a) Zeeman structure of the nuclear spin
states in the rotational ground state of RbCs. (b) Magnetic moments µ/µN of the states as a function of magnetic field B. We
construct the qubit from the states |0〉 ≡ (0, 4)1 and |1〉 ≡ (0, 3)0, which are chosen as they possess identical magnetic moments
when B = 154.524 G (indicated by the vertical dashed line). (c) The differential magnetic moment µ01 = µ|1〉−µ|0〉 as a function
of magnetic field. (d) Configuration of states and microwave pulse sequence used to perform Ramsey spectroscopy. The energy
separation between the qubit states and the rotationally excited state |E〉 is 2Bv ≈ 980 MHz. (e) Measured coherence time
T2 as a function of magnetic field. The line shows a model for the decoherence as described in the text. Fitting to the results
indicates a magnetic field variation of 34(5) mG over the course of the measurement contributes to the observed decoherence,
and a peak coherence time T ∗2 = 1.3(4) s when µ01 ≈ 0. (f) Example Ramsey measurement performed at B = 154.50 G, where
µ01 ≈ 0. The y-axis indicates the number of molecules remaining in state |0〉 measured as a function of the Ramsey time
T . The red shaded region indicates the maximum and minimum of the Ramsey fringes observed when B = 217.39 G, where
µ01 ≈ 0.17µN and the coherence time is correspondingly much shorter. The trap light has polarisation β = 0◦ and intensity
I = 15.8 kW cm−2 for all measurements shown.

nuclear spin states in the N = 0 rotational ground state
of RbCs, with energies E shown in Fig. 1(a). The mag-
netic moments µ = dE/dB for a selection of the states
are plotted as a function of magnetic field B in Fig. 1(b).
There are a number of state combinations which display
crossings where the difference in magnetic moments is
zero. These crossings indicate turning points in the en-
ergy difference between states, where the energy differ-
ence becomes insensitive to magnetic field noise. Our ex-
periment produces an optically trapped ultracold gas of
RbCs molecules by association from a pre-cooled atomic
mixture [32, 33], using a procedure (see Methods) that
initialises the molecules in the state (0, 4)1; full state
compositions are given in the Supplementary Informa-
tion. For simplicity, we therefore select the qubit states
to be |0〉 ≡ (0, 4)1 and |1〉 ≡ (0, 3)0 which are predicted
to have the same magnetic moment when B = 154.524 G,
as shown in Fig. 1(c), where we plot µ01 = µ|1〉 − µ|0〉.

We investigate the dependence of the coherence time
T2 on µ01 by performing a series of Ramsey measure-
ments to measure T2 as a function of B (see Fig. 1(d)
and Methods). The results are shown in Fig. 1(e). We
observe the longest coherence time when the difference
in magnetic moments between the two states is zero, as

expected. We fit the magnetic field variation of T2 with

T2 =

(
|µ01| ∆B

h
+

1

T ∗2

)−1

, (1)

where ∆B and T ∗2 are fitting parameters (see the Sup-
plementary Information for a derivation of Eq. 1). µ01

is calculated from the molecular Hamiltonian as shown
in Fig. 1(c). ∆B describes the magnitude of varia-
tion in magnetic field over the duration of the mea-
surement which contributes to the decoherence. We
find ∆B = 34(5) mG, which is consistent with the ex-
pected stability of the magnetic fields in our experi-
ments. The term T ∗2 accounts for other sources of de-
coherence, which we show below to be dominated by dif-
ferential tensor light shifts. For these measurements we
find T ∗2 = 1.3(4) s, for trap light polarised with β = 0◦

and intensity I = 15.8 kW cm−2. Fig. 1(f) shows Ram-
sey fringes recorded close to the µ01 = 0 condition and
contrasts the behaviour with that seen at B = 217.39 G
where, although the difference in magnetic moments is
still small, magnetic dephasing limits the coherence time.
We estimate that the limit on the coherence time at
B = 154.52 G due to magnetic field noise of ∆B = 35 mG
is ∼ 2.0× 103 s (see Supplementary Information).

To show that the remaining decoherence T ∗2 is dom-
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FIG. 2. Differential tensor light shifts between nuclear spin states in the rotational ground state. We measure
the differential light shifts between |0〉 ≡ (0, 4)1 and |1〉 ≡ (0, 3)0 by Ramsey spectroscopy. We show the Hamiltonian matrix
elements for (a) the nuclear electric quadrupole interaction Hquad and (b) the AC Stark effect HAC graphically for the uncoupled
|N,MN ,mRb,mCs〉 basis. The states are split by dashed lines into groups according to N and by minor ticks into multiples of
32 basis states with the same MN . The block diagonal elements in N are labelled for N > 0. The color coding indicates the
value of the matrix element in units of frequency. Note the off-diagonal elements connecting states with ∆N = 2 shaded in
yellow, which lead to tensor light shifts proportional to the anisotropic polarisability. The mathematical expressions describing

the matrix elements are given in the Supplementary Information. H
(2)
AC is calculated for an intensity of 16 kW cm−2 and a

polarisation angle of β = 0◦. (c) Two-photon detuning δ as a function of the trap intensity I. The linear polarisation of each
beam is set to an angle β of (i) 0◦ (ii) 55◦ (iii) 90◦ with respect to a 154.50 G magnetic field. The coloured lines indicate a fit

to the results, following the model given in Eq. 3. We find α(2)/(4πε0) = 545(4) a30, and δ0 = 983.0(2) Hz. (d) Differential
polarisability between the states as a function of magnetic field, measured for β = 0◦. The line is the expectation from the
molecular Hamiltonian (see Methods). (e) δ measured in a single beam of the dipole trap with fixed intensity I = 15.3 kW cm−2,
as a function of β. The dashed horizontal line indicates δ0. The solid line is calculated using Eq.3 with the parameters found
in (c).

inated by differential tensor light shifts, we perform a
series of Ramsey measurements using different optical
trap intensities. Each Ramsey measurement allows us
to precisely determine the difference in energy between
|0〉 and |1〉. For these experiments the two microwaves
fields differ in frequency by 76 kHz, and so by measur-
ing the frequency of the Ramsey fringes δ, we deter-
mine the difference in energy between the states equal
to h× (76 kHz+δ). The sign of δ is found by comparison
with additional Ramsey measurements with intentionally
different two-photon detunings. We measure δ for a range
of trap laser intensities, and find an intensity-dependent
energy shift between the two states as shown in Fig. 2.

The differential light shift arises from terms off-
diagonal in N which cause mixing between states with
the same parity. The largest contributions to the light
shift are second-order terms

〈N = 0,MN = 0|HAC |2, 0〉 〈2, 0|Hquad |0, 0〉 , (2)

where HAC and Hquad represent the the AC Stark and
nuclear electric quadrupole interactions, respectively (see

Methods). The matrix elements of HAC and Hquad are
shown graphically in Figs. 2(a) and (b). These second-
order terms lead to components with N > 0 in the state
composition of |0〉 and |1〉 with coefficients < 10−5. This
results in tensor light shifts in the rotational ground state
which scale with the anisotropic polarisability α(2) [6] and
depend on MF and the laser polarisation. This is analo-
gous to the tensor light shifts that arise in ground-state
alkali atoms due to hyperfine structure [34]. The terms
in Eq. 2 are all diagonal in MN and are proportional to
P2(cosβ) = 1

2 (3 cos2 β−1), where β is the angle between
the linearly polarised electric field of the trap light and
the applied magnetic field which forms the quantisation
axis. As a result, the light shift changes the observed
two-photon detuning according to

δ = (α01I)/2hε0c+ δ0, (3)

where

α01 = X(B)α(2)P2(cosβ), (4)

is the difference in the effective differential polarisability
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between the states. Here, I is the average intensity expe-
rienced by the molecules, δ0 is the two-photon detuning
in free space, and X(B) is a numerical factor which is
determined from the molecular Hamiltonian and depends
upon the magnetic field.

In addition to the tensor light shift, each state also
experiences a much larger scalar light shift. However,
as the scalar shift is identical for all states, this does
not contribute to decoherence. The largest differential
tensor light shift we measure is 1.01995(6) Hz kW−1 cm2,
for β = 0◦. This is caused by individual tensor
lights shifts for each of the states which we calculate to
be −1.45 Hz kW−1 cm2 for |0〉, and −2.47 Hz kW−1 cm2

for |1〉. In contrast the scalar light shift for both states is
−41.2 kHz kW−1 cm2; this is 4 orders of magnitude larger
than the tensor light shifts.

We compare our calculations with the behaviour ob-
served in experiments. For a magnetic field of B ≈
154.50 G where magnetic decoherence is minimised, we
calculate the prefactor X(B) = 4.00(4) × 10−5. We
plot the differential light shift measured at this mag-
netic field in the optical trap for fixed laser polarisations
β = 0◦, 54◦, 90◦ in Fig. 2(c). The solid lines indicate a
fit to the results using Eq. 3, with α(2) and δ0 as free
parameters. We find excellent agreement between our
model and the experiment, with α(2)/4πε0 = 545(4) a3

0

and δ0 = 983.0(2) Hz. The uncertainties shown are the
statistical uncertainties found in the fitting. Additional
systematic uncertainties in α(2) are given in the Sup-
plementary Information. The value of δ0 indicates the
two-photon detuning in free space, and so we determine
the free-space energy difference between the states of
h × (76 kHz + δ0) = h × 76.983 0(2) kHz. This is in ex-
cellent agreement with a calculation from the molecular
Hamiltonian which predicts an energy difference between
the states of h × 77.0(7) kHz, where the uncertainty re-
sults from the current precision with which the strength
of the scalar nuclear spin-spin interaction (c4) and the
magnitude of the nuclear magnetic moments are known
for RbCs [1, 2].

To test our understanding of the origin of the differ-
ential light shift further, we explore different magnetic
fields as shown in Fig. 2(d). For higher magnetic fields,
the measurements are performed for β = 0◦ only. The
increased uncertainties arise from the magnetic dephas-
ing restricting the measurement time. The variation with
magnetic field arises from the numerical prefactor X(B)
in Eq. 4. We find good qualitative agreement between
theory and experiment, with α01 rising with magnetic
field. For calculations over a broader range of magnetic
fields see the Supplementary Information. Our theory ap-
pears to underestimate the increase in α01 slightly. We
attribute the discrepancy to uncertainties in the param-
eters of the molecular Hamiltonian which combine in a
non-trivial way in the calculation of X(B). Ramsey mea-
surements of the type presented here should permit fur-

ther refinement of these parameters. This will be the
focus of future work.

The tensor light shifts we observe are proportional to
P2(cosβ). This allows us to engineer a magic polarisa-
tion trap, as P2(cosβ) = 0 for the magic angle βmagic =

arccos
√

1/3 ≈ 55◦. We experimentally verify this angle
dependence in Fig. 2(e) using a single beam of the dipole
trap. We see that the polarisation dependence of the ex-
perimentally measured δ is well described by our model
and that δ ≈ δ0 when β ≈ 55◦, indicating that the tensor
light shift is zero. This is further confirmed using the
measurements in Fig. 2(c), where all δ measured in the
trap for β = 55◦ are consistent with the free-space value,
and the gradient of δ as a function of I is zero.

The optimal configuration to maximise coherence time
is where µ01 = 0 and α01 = 0, which is realised in our
experiments for B ≈ 154.5 G and β ≈ 55◦. We perform
a Ramsey experiment using these optimal parameters as
shown in Fig. 3. The maximum Ramsey time available
is limited by collisional loss of the molecules [4, 5] with
T1 = 0.61(4) seconds, which reduces our signal at long
times. We measure Ramsey fringes out to T = 1.2 s with
no evidence of decoherence. These results are consistent
with T ∗2 > 6.9 s (90 % confidence level, see Supplemen-
tary Information), an order of magnitude longer than any
previous work [25]. Using this measurement we find the
energy difference between the states in the trap to be
h×76, 982.733(16) Hz; this is a precision of 1 part in 107.

Our measurements do not indicate any other de-
tectable mechanisms for decoherence. We see no evi-
dence for collisional energy shifts, which would be ob-
served by a change in the energies of the states when
the density reduces over the course of each Ramsey mea-
surement (see Supplementary Information). This is con-
sistent with previous observations [25], and the absence
of collisional energy shifts or decoherence may be ex-
pected as short-range collisions in the gas lead to loss of
molecules with high probability [4, 5, 37, 38]. Measure-
ments of the coherence out to longer times will require
confinement of the molecules to a 3D optical lattice [39]
, optical tweezers [40–42], or the use of alternative trap-
ping techniques such as a blue-detuned optical trap [43]
to avoid losses from the optical excitation of two-molecule
collision complexes [4, 44]. The creation of controlled ar-
rays of molecules is also a key component of the proposed
quantum computing protocols where storage qubits have
applications; our method of using a magic-polarisation
trap is compatible with the confinement of molecules to
arrays of optical tweezers or a 3D optical lattice [45].

In conclusion, we have demonstrated a robust storage
qubit constructed from the nuclear spin states of ultra-
cold RbCs molecules. We have shown how magnetic de-
phasing can be eliminated by tuning the magnetic field to
where the states have identical magnetic moments. This
revealed an unexpected differential tensor light shift due
to weak mixing of rotational states of the same parity,
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FIG. 3. Robust coherence of the storage qubit. Ramsey experiment with the qubit states |0〉 ≡ (0, 4)1 and |1〉 ≡ (0, 3)0,
using the optimal configuration B ≈ 154.50 G, β ≈ 55◦. The y-axis indicates the number of molecules remaining in |0〉, following
the Ramsey sequence shown inset, as a function of the hold time T . The shaded region in the upper plot indicates the maximum
and minimum of the Ramsey fringes as a function of time; the spacing of the fringes is too small to plot at this scale. The
lower plots show the Ramsey fringes observed at 400 ms intervals.

which caused decoherence due to the nonuniform opti-
cal potential. We have shown how to eliminate these
light shifts by setting the linear polarisation of the trap
light to a magic angle βmagic = arccos

√
1/3 ≈ 55◦ with

respect to the magnetic field. Our optimal configura-
tion leads to Ramsey fringes which persist for T ∗2 > 6.9 s
(90 % confidence level), at least an order of magnitude
improvement over the previous state of the art. Our
findings are broadly applicable to all 1Σ molecules in
their rovibrational ground state, including the range of
bialkali molecules currently under investigation. Our
work demonstrates the implementation of robust stor-
age qubits, which will be essential in future high-fidelity
quantum computing architectures using controllable ar-
rays of ultracold polar molecules.

METHODS

Hamiltonian used to calculate the rotational and
hyperfine structure

We calculate the energy level structure of RbCs in the
electronic and vibrational ground state by diagonalising
the relevant Hamiltonian. We extract the energy levels
and eigenstates of the Hamiltonian by numerical diag-
onalisation. The hyperfine constants for all of our cal-
culations are given in the Supplementary Information.
In the presence of externally applied magnetic and off-
resonant optical fields, the Hamiltonian (HRbCs) can be
decomposed into rotational (Hrot), hyperfine (Hhf), Zee-
man (HZeeman), and AC Stark (HAC) components [3, 46]:

HRbCs = Hrot +Hhf +HZeeman +HAC. (5)

The rotational contribution

Hrot = BvN
2 −DvN

2 ·N2, (6)

is defined by the rotational angular momentum opera-
tor N , and the rotational and centrifugal distortion con-
stants, Bv and Dv. The hyperfine contribution consists
of four terms

Hhf = Hquad +H
(0)
II +H

(2)
II +HNI , (7)

where

Hquad =
∑

j=Rb,Cs

eQj · qj , (8a)

H
(0)
II = c4IRb · ICs, (8b)

H
(2)
II = −c3

√
6T 2(C) · T 2 (ICs, IRb) (8c)

HNI =
∑

j=Rb,Cs

cjN · Ij . (8d)

Hquad represents the interaction between the nuclear
electric quadrupole of nucleus j (eQj) with the electric

field gradient at the nucleus (qj). H
(0)
II and H

(2)
II are

the scalar and tensor nuclear spin-spin interactions, with
strengths governed by the coefficients c4 and c3. The
second-rank tensors T 2 describe the angular dependence
and anisotropy of the interactions [48]. HNI is the inter-
action between the nuclear magnetic moments and the
magnetic field generated by the rotating molecule and
has a coupling constant cj for each of the two nuclei.

The Zeeman contribution to the Hamiltonian describes
interaction of the rotational and nuclear magnetic mo-
ments with the external magnetic field (B) and is

HZeeman =− grµNN ·B

−
∑

j=Rb,Cs

gj (1− σj)µNIj ·B. (9)
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The first term accounts for the magnetic moment gener-
ated by the rotation of the molecule, characterised by the
rotational g-factor gr. The second term accounts for the
nuclear spin contributions, characterised by the nuclear
g-factors gj shielded isotropically by the factor σj [3]. In
both terms µN is the nuclear magneton. For our analy-
sis we designate the axis of the magnetic field B as the
space-fixed z axis and its magnitude as B.

The AC Stark effect arises from the interaction
of an off-resonant oscillating electric field EAC with
the frequency-dependent molecular polarisability tensor
α [6], and has a contribution to the Hamiltonian

HAC = −1

2
EAC ·α ·EAC. (10)

The terms Hquad, H
(2)
II , and HAC all have components

which are off-diagonal in N , and therefore contribute to
the tensor light shifts which we observe. To be explicit,
the matrix elements for these terms are included in Sup-
plementary Information.

Production of ultracold RbCs molecules

We produce ground-state RbCs molecules from an
optically trapped ultracold mixture of 87Rb and 133Cs
atoms using a two-step process. First, we use mag-
netoassociation on an interspecies Feshbach resonance
at 197 G [49]. Following this, the remaining atoms
are removed from the trap using the Stern-Gerlach ef-
fect. Second, the magnetic field is set to 181.6 G, where
the molecules are transferred to a single hyperfine sub-
level of the X1Σ (v = 0, N = 0) rovibrational ground
state using stimulated Raman adiabatic passage (STI-
RAP) [32, 33, 50]. We set the STIRAP to initialise the
molecules in |0〉 ≡ (0, 4)1, and the transfer is performed
in free space to avoid spatially varying AC Stark shifts
which otherwise limit the efficiency [33]. Following STI-
RAP, the molecules are recaptured in a crossed optical
dipole trap at λ = 1550 nm; see the Supplementary In-
formation for details. Both beams are linearly polarised
at an angle β with respect to the applied magnetic field.
The molecules have a typical temperature of 0.7µK, and
a peak density of ∼ 1× 1011 cm−3. We detect molecules
by reversing the creation process and imaging the result-
ing atomic clouds. As such, we only image molecules
which occupy |0〉.

Ramsey measurement protocol

To measure the coherence time of the qubit, we per-
form Ramsey spectroscopy. To couple the qubit states,
we use two microwave fields to form a 3-level lambda sys-
tem, where both qubit states are coupled to a common
rotationally excited state |E〉, which is chosen to have

significant transition dipole moment to both |0〉 and |1〉.
The excited states used throughout this work are tabu-
lated in the Supplementary Information, along with tech-
nical details of the microwave apparatus we use.

For the measurements presented in Fig. 1, we pre-
pare an equal superposition of |0〉 and |1〉 by applying
a π/2 pulse on the |0〉 ↔ |E〉 transition followed by a π
pulse on the |E〉 ↔ |1〉 transition. The optical trap is
briefly switched off during any microwave pulses in or-
der to avoid varying AC Stark shifts of the transitions
across the thermal spatial distribution of molecules. The
typical duration for each pulse is ∼ 100µs. We project
the phase of the superposition onto the population of
the states by reversing this pulse sequence after a hold
time T as shown in Fig.1(d). During T the molecules
are confined to the crossed optical dipole trap, and a DC
magnetic field is applied in the vertical z direction. With
the two microwave frequencies fixed, we observe Ramsey
fringes in the form of an oscillating number of molecules
in the initial state |0〉 as a function of T .

For the measurements presented in Fig. 2 and Fig. 3,
we find that there is a strong transition from |0〉 to (1, 4)4

just 20 kHz detuned from the |E〉 ↔ |1〉 transition fre-
quency. We therefore use a modified Ramsey sequence as
shown in the inset to Fig. 3 to avoid off-resonantly driving
the population out of |0〉 during the Ramsey pulses.

The frequency of the Ramsey fringes is equal to the
two-photon detuning of the microwaves. We fit a model
to the fringes (derived in Supplementary Information)
which accounts for both two-body collisional loss of
molecules and decoherence of the superposition,

N(T ) =

Ni
2

(
1

1 + T
T1

[e− 1]

)
×
[
e−T/T2 cos(2π(δT + φ)) + 1

]
.

(11)

Here, Ni is the initial total number of molecules, T1 is
the 1/e lifetime for molecules in the trap, T2 is the 1/e
coherence time, and δ and φ are the frequency and phase
of the Ramsey fringes.

To set the magnetic field for a given measurement, we
jump the magnetic field to its target value immediately
after the STIRAP and then hold 5 ms before the start
of the Ramsey sequence. After the Ramsey sequence is
completed, the magnetic field is jumped back to 181.6 G
and held for 5 ms before the return STIRAP and imaging.
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SUPPLEMENTARY INFORMATION

MOLECULAR CONSTANTS

The molecular constants used for the calculation of the
rotational and hyperfine structure of 87Rb133Cs are given
in Table I.

CROSSED OPTICAL DIPOLE TRAP
APPARATUS

The light for the crossed optical dipole trap (xODT)
is generated by a single-mode IPG fibre laser, with wave-
length λ = 1550 nm. The two beams have waists of
81(1)µm and 97(1)µm and cross at an angle of 27◦, with
both beams propagating in the horizontal plane. There
is a frequency difference of 100 MHz between the beams
to avoid interference effects. Both beams are linearly po-
larised at an angle β with respect to the applied magnetic
field, which is oriented along the vertical z direction. The
angle β is set by manually rotating a λ/2 waveplate in
each beam. For measurements with fixed xODT intensity
of 15.8 kW cm−2 (Figs. 1 and 3), the trap frequencies ex-
perienced by the molecules in the rotational ground state
are (ωx, ωy, ωz)/2π = (29(1), 119(2), 116(2)) Hz.

Molecules in different parts of the xODT experience
different intensities, with a range determined by the ra-
tio between the beam waist and the width of the molecule
sample. The distribution of the molecules is Gaus-
sian with standard deviations σ =

√
kBT/mω2, where

T = 0.7µK is the temperature of the molecules, such that
(σx, σy, σz) ≈ (28, 6.9, 7.0)µm. Due to gravitational sag,
the centre of the distribution is z0 = g/ω2

z ≈ 18 µm below
the position of peak intensity. Under these conditions,
the variation of intensity across the cloud is dominated
by the vertical direction and we estimate the 2σ intensity

Constant Value Ref.

Bv 490.173 994(45) MHz [1]
Dv 207.3(2) Hz [2]

(eQq)Rb −809.29(1.13) kHz [1]
(eQq)Cs 59.98(1.86) kHz [1]
cRb 29.4 Hz [3]
cCs 196.8 Hz [3]
c3 192.4 Hz [3]
c4 19.019(105) kHz [1]
gr 0.0062 [3]

gRb · (1− σRb) 1.8295(24) [1]
gCs · (1− σCs) 0.7331(12) [1]

TABLE I. Constants involved in the molecular Hamiltonian
for 87Rb133Cs. Terms without uncertainties are calculated
using density-functional theory (DFT) [3]. Other terms are
found by microwave spectroscopy of the rotational transi-
tions [1, 2].

difference to be

∆I ≈ 8z0σz
w2

0

Ipk ≈ 0.13Ipk, (S1)

using the mean of the two beam waists, ω0 = 89µm.
This represents an upper limit on the intensity variation
that could contribute to decoherence in our experiments.

MICROWAVE APPARATUS

To drive the transition between N = 0 ↔ 1, we ap-
ply microwaves with a frequency of 2 × Bv ≈ 980 MHz.
The microwaves are generated using a pair of Keysight
MXG N5183B signal generators, which are synchronised
to a common 10 MHz GPS reference (Jackson Labs Fury).
The outputs of both signal generators are connected to a
single 3 W amplifier that drives a homebuilt antenna con-
structed from 1 mm diameter copper wire, cut to a length
of λ/4 ≈ 7.7 cm. The microwaves are polarised such
that they drive both π and σ± transitions. Pulses are
generated using the built-in pulse modulation mode on
the signal generators which are controlled by transistor-
transistor logic (TTL) signals derived from a field pro-
grammable gate array (FPGA) with microsecond timing
resolution.

In experiments, we find that the resonant frequencies
for the transitions depend linearly upon the intensity of
the microwaves used to drive the transitions. This is
due to off-resonant couplings to other nearby transitions
between the rotational states. These energy shifts are
< h × 3 kHz for all measurements shown, and we have
tested that the coherence times we measure do not de-
pend upon the intensity of the microwaves used in the
state preparation.

In Supp. Fig. 1 and Supp. Fig. 2 we show the available
transitions for the two ground states used at 154.5 G
[(0, 4)1 and (0, 3)0] as well as the available transitions
from the excited states (1, 4)3 and (1, 3)2 at a magnetic
field of 154.5 G. For a given sub-level of N = 1 there
are fewer allowed transitions back to N = 0 due to the
smaller total number of hyperfine sub-levels and so off-
resonant coupling is less of a concern. We note that any
N = 1 component which remains during the Ramsey hold
will quickly dephase (coherence time less than 1 ms), and
so if present would simply contribute a non-zero molecule
number background to the Ramsey fringes. The absence
of any non-zero background signal in Fig. 3 indicates that
this is not an issue.

STATES AND TRANSITIONS USED IN THIS
WORK

The molecular states that we label by (N,MF )k in the
main text are a superposition of the products of different



10

molecular rotational states and nuclear spin states. To
determine the coefficients of these states, we construct
the Hamiltonian in the fully uncoupled basis with ba-
sis functions |N,MN ,mRb,mCs〉. The quantum number
MF = MN +mRb +mCs is conserved when the laser po-
larisation is parallel to the magnetic field (β = 0), but
not otherwise. For each eigenstate, we calculate the ex-
pectation value 〈ψ|Fz |ψ〉 and label the state with the
nearest integer value of MF . We then order the states by
energy to determine k. The composition of each of the
states used in this work is shown in table II, with coef-
ficients rounded to 1 part in 103. This rounding causes
the table to omit coefficients that are non-zero and on
the order of 1 part in 105 to 1 part in 106 for basis states
with N = 2 in the ground rotational state. There are co-
efficients with a similar magnitude for basis states with
N = 3 in the first rotationally excited state.

DERIVATION OF EQUATION 1 AND
MAGNETIC FIELD LIMIT ON THE
COHERENCE TIME AT B = 154.52 G

The coherence time T2 is limited by variation ∆E01 in
the energy difference between the two states such that

T2 =
h

|∆E01|
, (S2)

where h is the Planck constant. The energy difference at
a given magnetic field

E01(B) = |E|0〉(B)− E|1〉(B)| (S3)

can be calculated from the energies of the two states,
E|0〉(B) and E|1〉(B). We plot E01 as a function of mag-
netic field in Supp. Fig. 3(a). The magnitude of ∆E01 is
the difference between the maximum and minimum value
of E01 experienced in a given measurement.

To explain the results shown in Fig. 1, we must evaluate
E01 across the range of magnetic fields defined by the
magnetic field noise ∆B. Away from the turning point
at B0 = 154.52 G, the minimum and maximum values of
E01 are found at B±∆B/2. The variation in energy can
therefore be evaluated by

∆E01 = |E01(B + ∆B/2)− E01(B −∆B/2)|. (S4)

At the turning point, the minimum and maximum values
of E01 are found at B0 and B0±∆B/2 respectively. The
variation in energy here is

∆E01 = |E01(B0 ±∆B/2)− E01(B0)|. (S5)

The transition between these two regimes occurs when
|B −B0| ≈ ∆B.

Derivation of Equation 1

When the trap laser is polarised parallel to the mag-
netic field direction (β = 0), we find that the decoher-
ence is dominated by the tensor light shifts across a wide
range of magnetic fields around the turning point (see
Supp. Fig. 4). As such we can reasonably approximate
the magnetic field variation using just Eq. S4. To arrive
at the fit function presented in Eq. 1, we calculate the
Taylor expansion of Eq. S4 to find,

∆E01 =
dE01

dB
(∆B) +

1

2

d2E01

dB2
(∆B)

2
+ ... (S6)

The first and second derivatives of energy with respect
to magnetic field are plotted in Supp. Fig. 3(b) and (c),
respectively. The second derivative of E01 is two orders
of magnitude smaller than the first derivative at mag-
netic fields where the tensor light shifts do not dominate.
For small variations in magnetic field ∆B < 1 G, we can
therefore approximate

∆E01 ≈
dE01

dB
(∆B) ≡ µ01∆B, (S7)

using only the first term in Eq. S6. Substituting Eq. S7
into Eq. S2 we find the coherence time limited by mag-
netic field noise

T ′2 ≈
h

|µ01|∆B
. (S8)

To include the differential tensor light shifts as an addi-
tional source of decoherence, with coherence time T ∗2 , we
combine the coherence times as

1

T2
=

1

T ′2
+

1

T ∗2
, (S9)

to find the fit function

T2 =

(
|µ01| ∆B

h
+

1

T ∗2

)−1

. (S10)

Magnetic field limit on the coherence time at
B = 154.52 G

We can estimate the limit placed on the coherence time
by ∆B by at the turning point by performing a Taylor
expansion of Eq. S5

∆E01 =
dE01

dB

(
∆B

2

)
+

1

2

d2E01

dB2

(
∆B

2

)2

+ ... (S11)

At this magnetic field, dE01/dB = 0, and so only the sec-
ond derivative contributes. We calculate d2E01/dB

2 =
h × 3.2 Hz G−2 (see Supp. Fig. 3(c)). For ∆B = 35 mG,
we therefore find

∆E01 =
1

2
×(h×3.2)×

(
0.035

2

)2

= h×0.49 mHz, (S12)
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with a corresponding coherence time of

T ′2 =
1

0.49 mHz
= 2.0× 103 s. (S13)

This is remarkably long and validates the omission of the
second order term in Eq. S11 from the fit function in
Eq. 1.

DERIVATION OF EQUATION 11

The function used to fit the observed Ramsey fringes
is given in Eq. 11.

In the absence of decoherence and collisional loss of
molecules from the trap, the Ramsey fringes are de-
scribed by

N(T ) =
Ni
2

[cos(2π(δT + φ)) + 1] , (S14)

where N(T ) is the number of molecules remaining in
state |0〉, Ni is the total number of molecules, T is the
hold time between the Ramsey pulses, and δ and φ are
the frequency and phase of the Ramsey fringes. We in-
clude decoherence, with a characteristic 1/e coherence
time T2 as

N(T ) =
Ni
2

[
e−T/T2 cos(2π(δT + φ)) + 1

]
, (S15)

where the addition of the exponential term reduces the
contrast of the Ramsey fringes as T increases.

Collisional loss of molecules from the trap reduces the
total number of molecules remaining in the sample, but
does not affect the contrast of the fringes. We have pre-
viously shown that these losses are due to fast optical
excitation of two-body collision complexes by the trap
light [4], and the rate limiting step for this loss mech-
anism is therefore two-body [5]. Accordingly, the rate
equation for the density of ground-state molecules n(t) is

dn

dt
= −K2n(t)2, (S16)

where K2 is a two-body rate coefficient which charac-
terises the loss with units m3 s−1. This equation can be
rewritten in terms of the molecule number N(t) by intro-
ducing an effective volume Veff = (mω̄/(4πkBTm)−(3/2)

which depends on the temperature of the molecules Tm

and the geometric mean of the trap frequencies ω̄ =
(ωxωyωz)

1/3. This yields

dN

dt
= −K2

Veff
N(t)2. (S17)

To simplify the solution of this equation we assume that
the temperature remains constant throughout the mea-
surement. Rearranging and integrating then leads to

N(t) =
Ni

1 + K2

Veff
Nit

, (S18)

where Ni is the initial molecule number. To find the 1/e
time which characterises this loss T1 we must evaluate

N(T1) =
Ni

1 + K2

Veff
NiT1

=
Ni
e
, (S19)

which by rearrangement leads to

K2

Veff
Ni =

e− 1

T1
. (S20)

Substituting Eq. S15 back into Eq. S13 yields

N(t) =
Ni

1 + t
T1

(e− 1)
. (S21)

To describe the Ramsey fringes in the presence of both
decoherence and collisional loss, we must replace Ni in
Eq. S10 with the expression forN(t) in Eq. S16 to find the
fit function given in Eq. 11 as a function of the Ramsey
time T

N(T ) =

Ni
2

(
1

1 + T
T1

[e− 1]

)
×
[
e−T/T2 cos(2π(δT + φ)) + 1

]
.

(S22)

It is worth noting that whilst T1 is the time for the
molecule number to fall to 1/e of the initial value, the
decay is not exponential and so waiting 2T1 does not
lead to the molecule number falling to 1/e2 of the ini-
tial value. This is an artefact of the density-dependent
character of the two-body loss.

MATRIX ELEMENTS FOR Hquad AND HAC

The dominant terms that contribute to the differen-
tial AC Stark shift between hyperfine states are Hquad

and HAC. To be explicit, and to demonstrate the off-
diagonality in N , we give the matrix elements for each of
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these terms here.

〈N,MN ,mRb,mCs|Hquad |N ′,M ′N ,m′Rb,m
′
Cs〉 =

2∑
M=−2

{√
(2N + 1)(2N ′ + 1)(−1)M

×
(

N 2 N ′

−MN M M ′N

)(
N 2 N ′

0 0 0

)
×
[(

(eqQ)Rb

4

)
(−1)MN+IRb−mRb

×

(
IRb 2 IRb

−mRb −M m′Rb

)
(
IRb 2 IRb

−IRb 0 IRb

) δmCs,m′
Cs

+

(
(eqQ)Cs

4

)
(−1)MN+ICs−mCs

×

(
ICs 2 ICs

−mCs −M m′Cs

)
(
ICs 2 ICs

−ICs 0 ICs

) δmRb,m′
Rb

]}
,

(S23)

In the above, terms in parentheses are Wigner-3j sym-
bols, δA,B represents the Kronecker delta function and
the coefficients have the same definition as in [1].

〈N,MN |HAC |N ′,M ′N 〉 = −Iα
(0)

2ε0c
δN,N ′δMN ,M ′

N

−Iα
(2)

2ε0c

∑
M

d2
M0(β)(−1)M

′
N

√
(2N + 1) (2N ′ + 1)

×
(
N ′ 2 N
0 0 0

)(
N ′ 2 N
−M ′N M MN

)
.

(S24)

Here, I is the laser intensity, δA,B is a Kronecker delta
and d2

M0(β) is a reduced Wigner rotation matrix. The
term proportional to the isotropic part, α(0), produces
an equal energy shift of all (N,MN ). The term propor-
tional to the anisotropic part, α(2), has more complicated
behavior: for N > 0 it has elements both diagonal and
off-diagonal in N,MN that depend on β.

VALIDATING THE FORM OF EQUATION 4

Our model for the rotational and hyperfine structure of
RbCs is able to replicate the structure of the AC Stark
shift observed in experiments, and is used to calculate
the magnetic field dependencies presented in Fig. 1 and
Fig. 2(d). However, for Fig. 2(c) and (e) a simplified fit
function is used, given by Eq. 2 and Eq. 3, and we use
our full Hamiltonian to calculate the numerical factor
X(B). The simpler fit function was then used to find
the optimal value for the anisotropic polarisability α(2)

and the free-space detuning δ0. In Supp. Fig. 5 we show

the calculations using the full Hamiltonian for all of the
results in Fig. 2(c)-(e). We see that our full model is well
described by the simpler fit function we use in the main
text.

ADDITIONAL SYSTEMATIC UNCERTAINTIES
IN THE MEASUREMENT OF α(2)

There are additional systematic contributions to the
uncertainty in α(2). Uncertainty in I contributes addi-
tional uncertainty of ±2 % to α(2). There is also uncer-
tainty from the compositions of the states which is more
difficult to quantify due to the large number of parame-
ters in the Hamiltonian. The largest contribution to the
mixing of N is from the Rb electric quadrupole coupling,
characterised by the constant (eQq)Rb; the uncertainty
from this parameter contributes an uncertainty in α(2) of
±1 %. The fitted value of α(2) lies intermediate between
the two values we previously obtained from microwave
spectra on the N = 0↔ 1 transitions [6].

VARIATION OF THE AC STARK EFFECT WITH
MAGNETIC FIELD

The differential AC Stark shift is highly dependent on
the nuclear spin state of the molecules. In the experiment
we investigate only a small range of magnetic fields. Here
we present the full calculation as a function of magnetic
field from 0 to 1000 G.

To determine this behaviour we extract the eigenval-
ues of the Hamiltonian as a function of the strength of
the applied magnetic field for zero intensity. Each con-
tinuous energy level is labelled by MF which is deter-
mined by the expectation value 〈ψ|Fz |ψ〉 for each eigen-
state |ψ〉. We repeat this analysis for a second intensity
I = 60 kW cm−2 with β = 0◦. As the differential AC
Stark shift we are investigating is linear, we extract the
differential polarisability by determining the slope of the
change of the energy difference between the two states as
a function of intensity.

In Supp. Fig. 6 we show this gradient as a function
of the applied magnetic field. As the magnetic field in-
creases the gradient of the AC Stark shift eventually
reaches some asymptotic value. This occurs because
there are multiple competing terms in the total Hamil-
tonian that mix both rotational and nuclear spin states.
However the Zeeman effect acts mostly on the nuclear
spin states, which ultimately causes the nuclear spin
states to decouple such that the overall molecular wave-
function is best represented by the product of a single ro-
tational state |N,MN 〉 and nuclear spin state |mRb,mCs〉.
At high magnetic field |0〉 and |2〉 differ by 1 in the value
of mRb and by 2 in the value of mCs; as the dominant
off-diagonal term is the Rb nuclear electric quadrupole
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coupling, we believe that it is the difference in Rb nuclear
spin projection that contributes to the large differential
effective polarisability.

ESTIMATING THE MINIMUM COHERENCE
TIME IN FIG. 4

Our Ramsey measurements yield oscillations in the
number of molecules remaining in |0〉 as a function of
time. For the results in Figs. 1 and 2, we fit the os-
cillations using the model shown in Eq. 11. Fitting is
performed by a least-squares regression. T ∗2 cannot be
determined from the results shown in Fig. 3, because
the sum of squares of residuals decreases continuously as
T2 →∞, as shown in Supp. Fig. 7(a).

To estimate the minimum value of T ∗2 which is consis-
tent with our results in Fig. 3, we replace the fit param-
eter with a coherence rate coefficient β = 1/T2 such that
the fit function becomes,

N(T ) =

Ni

(
1

1 + T
T1
× [e− 1]

)
× 1

2
×
[
e−βT cos(δT + φ) + 1

]
.

(S25)

As T2 → ∞, β → 0, and we find a minimum in the
residual sum of squared as shown in Supp. Fig. 7(b). We
find an optimum value of β = −0.026 s−1 with root mean
square (RMS) deviation σ = 0.103 s−1.

In the main text we report a 90 % confidence inter-
val for the minimum value of T ∗2 , which we find using
the methods laid out by Feldman and Cousins [7]; this
approach unifies the treatment of one- and two-sided con-
fidence intervals. We apply the method to a model with
Gaussian statistics

P (β|βtrue) =
1

σ
√

2π
exp

(
− (β − βtrue)2

2σ2

)
, (S26)

where β is the measured value of βtrue, the true value of
the parameter, with RMS deviation σ. We consider the
case where βtrue > 0; this is valid for our experiments as
a negative value of β is non-physical, corresponding to
increasing coherence over the experiment. The 90 % con-
fidence intervals are shown in Supp. Fig. 8, which we cal-
culate using the same procedure as described in [8]. The
vertical line at β/σ ≈ −0.026/0.103 ≈ −0.251 indicates
our measured value, which puts a corresponding 90 % up-
per limit on βtrue ≈ 1.41σ ≈ 0.145 s−1. This upper limit
on β corresponds to a lower limit on T ∗2 = 1/βtrue = 6.9 s
(90 % confidence level).

CONFIRMING THE ABSENCE OF
COLLISIONAL SHIFTS

To look for evidence of collisional energy shifts we sep-
arate the results shown in Fig. 3 into six time-intervals,
each 204 ms long. We then fit the Ramsey fringes in each
time-interval independently and plot the result in Supp.
Fig. 9(a). Over the 1200 ms we interrogate the sample,
the number of molecules remaining drops to 0.23Ni. We
estimate that two-body loss will increase the tempera-
ture of the sample from 0.7µK to ∼ 1.0µK over this
time. The density n of the sample therefore reduces by
the fraction

n

ni
=
N

Ni

(
T

Ti

)−3/2

≈ 0.23×
(

1.0

0.7

)−3/2

= 0.13, (S27)

where ni is the starting density of the sample. We
see no significant change in the detuning of the mi-
crowaves as the density of the sample reduces, as shown
in Supp. Fig. 9(b) where we plot the results as a function
of the molecular density.
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B (G) |0〉 |1〉 |2〉 E02/h (kHz) E12/h (kHz)

110.1 (0, 4)1 ≡
−0.487 |0, 0, 3/2, 5/2〉
−0.874 |0, 0, 1/2, 7/2〉

(0, 3)0 ≡
0.833 |0, 0, 3/2, 3/2〉
−0.522 |0, 0, 1/2, 5/2〉
+0.183 |0, 0,−1/2, 7/2〉

(1, 3)2 ≡
0.054 |1, 1, 3/2, 1/2〉
−.059 |1, 1, 1/2, 3/2〉
−0.294 |1, 1,−0.5, 5/2〉
−0.318 |1, 1,−3/2, 7/2〉
+0.272 |1, 0, 3/2, 3/2〉
+0.199 |1, 0, 1/2, 5/2〉
−0.169 |1, 0,−1/2, 7/2〉
+0.523 |1,−1, 3/2, 5/2〉
+0.625 |1,−1, 1/2, 7/2〉

980,246.295 980,327.278

145.2 (0, 4)1 ≡
0.39 |0, 0, 3/2, 5/2〉
+0.920 |0, 0, 1/2, 7/2〉

(0, 3)0 ≡
−0.893 |0, 0, 3/2, 3/2〉
+0.435 |0, 0, 1/2, 5/2〉
−0.113 |0, 0,−1/2, 7/2〉

(1, 3)2 ≡
−0.036 |1, 1, 3/2, 1/2〉
+0.0287 |1, 1, 1/2, 3/2〉
+0.205 |1, 1,−1/2, 5/2〉
+0.290 |1, 1,−1.5, 7/2〉
−0.195 |1, 0, 3/2, 3/2〉
−0.171 |1, 0, 1/2, 5/2〉
+0.129 |1, 0,−1/2, 7/2〉
−0.467 |1,−1, 3/2, 5/2〉
+0.755 |1,−1, 1/2, 7/2〉

980,259.464 980,336.593

154.5 (0, 4)1 ≡
0.372 |0, 0, 3/2, 5/2〉
+0.928 |0, 0, 1/2, 7/2〉

(0, 3)0 ≡
0.905 |0, 0, 3/2, 3/2〉
+0.415 |0, 0, 1/2, 5/2〉
+0.100 |0, 0,−1/2, 7/2〉

(1, 3)2 ≡
−0.032 |1, 1, 3/2, 1/2〉
+0.023 |1, 1, 1/2, 3/2〉
+0.186 |1, 1,−1/2, 5/2〉
+0.281 |1, 1,−3/2, 7/2〉
−0.179 |1, 0, 3/2, 3/2〉
−0.162 |1, 0, 1/2, 5/2〉
+0.120 |1, 0,−1/2, 7/2〉
−0.450 |1,−1, 3/2, 5/2〉
−0.781 |1,−1, 1/2, 7/2〉

980,262.071 980,339.056

181.6 (0, 4)1 ≡
0.321 |0, 0, 3/2, 5/2〉
0.947 |0, 0, 1/2, 7/2〉

(0, 3)0 ≡
0.928 |0, 0, 3/2, 3/2〉
−0.365 |0, 0, 1/2, 5/2〉
−0.074 |0, 0, 1/2, 7/2〉

(1, 3)1 ≡
−0.080 |1, 1, 3/2, 1/2〉
+0.219 |1, 1, 1/2, 3/2〉
+0.162 |1, 1,−1/2, 5/2〉
−0.110 |1, 1,−3/2, 7/2〉
−0.687 |1, 0, 3/2, 3/2〉
−0.045 |1, 0, 1/2, 5/2〉
−0.018 |1, 0,−1/, 7/2〉
−0.540 |1,−1, 3/2, 5/2〉
+0.375 |1,−1, 1/2, 7/2〉

980,182.991 980,260.992

217.4 (0, 4)1 ≡
−0.269 |0, 0, 3/2, 5/2〉
−0.963 |0, 0, 1/2, 7/2〉

(0, 3)0 ≡
0.949 |0, 0, 3/2, 3/2〉
−0.312 |0, 0, 1/2, 5/2〉
+0.051 |0, 0, 1/2, 7/2〉

(1, 4)3 ≡
−0.323 |1, 1, 3/2, 3/2〉
−0.585 |1, 1, 1/2, 5/2〉
+0.355 |1, 1,−1/2, 7/2〉
−0.092 |1, 0, 3/2, 5/2〉
+0.645 |1, 0, 1/2, 7/2〉
−0.048 |1,−1, 3/2, 7/2〉

980,427.082 980,508.760

154.5 (0, 4)1 ≡
0.372 |0, 0, 3/2, 5/2〉
+0.928 |0, 0, 1/2, 7/2〉

(0, 3)0 ≡
0.904 |0, 0, 3/2, 3/2〉
−0.415 |0, 0, 1/2, 5/2〉
+0.100 |0, 0,−1/2, 7/2〉

(1, 4)3 ≡
0.478 |1, 1, 3/2, 3/2〉
+0.517 |1, 1, 1/2, 5/2〉
−0.455 |1, 1,−1/2, 7/2〉
+0.109 |1, 0, 3/2, 5/2〉
−0.529 |1, 0, 1/2, 7/2〉
−0.067 |1,−1, 3/2, 7/2〉

980,399.341 980,476.326

TABLE II. Compositions of states used in this work, written in the uncoupled basis |N,MN ,mRb,mCs〉 with coefficients
rounded to one part in 103. At each magnetic field, |1〉 is chosen to couple well to both |0〉 and |2〉. For the measurement at
154.5 G presented in Fig. 1, |1〉 = (1, 3)2. This state has very weak coupling on the |1〉 ↔ |2〉 transition. The measurements in
Fig. 2 and Fig. 3, are also at 154.5 G but instead use |1〉 = (1, 4)3, which has significantly better coupling on this transition,
but requires the use of the more complicated pulse sequence shown inset in Fig. 3. The final two columns give the calculated
transition frequencies in free space.
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Supp. Fig. 1. Transitions from the hyperfine states (0, 4)1 and (0, 3)0 of the N = 0 rotational state to N = 1 at 154.5 G.
Each state is coloured by the value of MF , allowed transitions have MF →MF − 1,MF ,MF + 1 with a strength described by
the transition dipole moment (TDM) here shown in units of the permanent dipole moment of the molecule d0 ≈ 1.23 D. The
vertical lines connect the labelled initial state for (a) and (b) to excited states via the electric dipole allowed transitions, the
thickness of the line corresponds to the strength of the transition. For both (a) and (b) the initial state is labelled as the zero
of energy. The target states used in this work are indicated by the arrows.

Supp. Fig. 2. Transitions from the hyperfine states (1, 4)3 and (1, 3)2 of the N = 1 rotational state to N = 0 at 154.5 G.
Each state is coloured by the value of MF , allowed transitions have MF →MF − 1,MF ,MF + 1 with a strength described by
the transition dipole moment (TDM) here shown in units of the permanent dipole moment of the molecule d0 ≈ 1.23 D. The
vertical lines connect the labelled initial state for (a) and (b) to the hyperfine sub-levels of the ground state via the electric
dipole allowed transitions, the thickness of the line corresponds to the strength of the transition. For both (a) and (b) the
initial state is labelled as the zero of energy. The target states used in this work are indicated by the arrows.
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Supp. Fig. 3. (a) Differential Zeeman shift between the states
E01 = |E|0〉 − E|1〉| along with the (b) first and (c) second
derivatives of E01 with respect to magnetic field. The first
derivative dE01/dB = µ01 = 0 at a magnetic field of B =
154.52 G indicating a turning point in E01.
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Supp. Fig. 4. Coherence time calculated for ∆B = 35 mG.
The red dotted line indicates the expected coherence time
for magnetic field noise alone, calculated using the expres-
sion in Eq. S8. The gray solid line is the complete model in-
cluding decoherence from the tensor light shifts (T ∗2 = 1.3 s)
that is present when the trap laser is polarised parallel to the
magnetic field direction (β = 0), as presented in the main
text. The horizontal dashed line indicates the coherence time
limited by the tensor light shifts alone, which dominates the
coherence time for magnetic fields across a broad range of
magnetic fields around the turning point.

Supp. Fig. 5. Differential tensor light shifts from the full ro-
tation and hyperfine calculation. Here we have reproduced
the experimental results shown in Fig. 2(c)-(e), together with
the results of the simple fit function given by Eq.(3) and
Eq.(4). In addition, the dotted lines indicate the output of
the full rotation and hyperfine calculation, including the dif-
ference in the free-space detuning highlighted in the main
text. The solid lines have the free-space detuning fixed to
be δ0 = 983.0 Hz. We see that the intensity dependence is
nearly identical to the simpler model presented in Fig. 2(c)
and (e), which indicates that our simpler equations capture
the behaviour of the differential tensor light shifts well.
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Supp. Fig. 6. The gradient of the differential AC Stark shift
as a function of the applied magnetic field. The data points
and the solid blue line are the same as in Fig. 2(d). The gray

dashed lines correspond to the two values of α(2) reported
in [6] and are labelled by α(2)/4πε0.
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Supp. Fig. 7. Change in the residual sum of squares as a function of the free parameters (a) T ∗2 and (b) β = 1/T ∗2 when fitting
the results presented in Fig. 3. The minimum value of the residuals is 8604837, found at the minima seen in (b). This value
is subtracted from the y-axes of both sets of data to give the change in residuals from this minimum value. The dotted lines
indicate ±1σ from the mean value found in (b). The dashed lines indicate the 90 % confidence interval for the minimum value
of the coherence time T2 consistent with our results.
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Supp. Fig. 8. The 90 % confidence bands for the mean of a
Gaussian distribution which is constrained to be non-negative
using the Feldman-Cousins approach (solid lines). The 90 %
confidence bands for an unconstrained Gaussian distribution
are also shown (dotted lines). The dashed vertical lines indi-
cate the measured value of β/σ = −0.251. The dashed hor-
izontal line shows where the vertical line intersects the 90 %
upper boundary when βtrue ≈ 1.41σ.

Supp. Fig. 9. Detuning measured from the Ramsey fringes presented in Fig. 3, but segmented into shorter 204 ms time intervals.
As the Ramsey time increases, the density of the sample reduces due to two-body loss of molecules from the trap. We plot
the detuning as a function of (a) time and (b) peak density. Each interval is indicated by the x error bars, with the marker
indicating the centre of the interval. The dashed horizontal line is the detuning found when fitting across the whole dataset.
We see no evidence that the detuning is dependent upon the density.
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