491 research outputs found

    Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading

    Get PDF
    The finite element method is used in biomechanics to provide numerical solutions to simulations of structures having complex geometry and spatially differing material properties. Time-varying load deformation behaviors can result from solid viscoelasticity as well as viscous fluid flow through porous materials. Finite element poroelastic analysis of rapidly loaded slow-draining materials may be ill-conditioned, but this problem is not widely known in the biomechanics field. It appears as instabilities in the calculation of interstitial fluid pressures, especially near boundaries and between different materials. Accurate solutions can require impractical compromises between mesh size and time steps. This article investigates the constraints imposed by this problem on tissues representative of the intervertebral disc, subjected to moderate physiological rates of deformation. Two test cylindrical structures were found to require over 10(4) linear displacement-constant pressure elements to avoid serious oscillations in calculated fluid pressure. Fewer Taylor–Hood (quadratic displacement–linear pressure elements) were required, but with complementary increases in computational costs. The Vermeer–Verruijt criterion for 1D mesh size provided guidelines for 3D mesh sizes for given time steps. Pressure instabilities may impose limitations on the use of the finite element method for simulating fluid transport behaviors of biological soft tissues at moderately rapid physiological loading rates

    Light-Front Quantisation as an Initial-Boundary Value Problem

    Full text link
    In the light front quantisation scheme initial conditions are usually provided on a single lightlike hyperplane. This, however, is insufficient to yield a unique solution of the field equations. We investigate under which additional conditions the problem of solving the field equations becomes well posed. The consequences for quantisation are studied within a Hamiltonian formulation by using the method of Faddeev and Jackiw for dealing with first-order Lagrangians. For the prototype field theory of massive scalar fields in 1+1 dimensions, we find that initial conditions for fixed light cone time {\sl and} boundary conditions in the spatial variable are sufficient to yield a consistent commutator algebra. Data on a second lightlike hyperplane are not necessary. Hamiltonian and Euler-Lagrange equations of motion become equivalent; the description of the dynamics remains canonical and simple. In this way we justify the approach of discretised light cone quantisation.Comment: 26 pages (including figure), tex, figure in latex, TPR 93-

    Geometry and material effects in Casimir physics - Scattering theory

    Full text link
    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, to nonzero temperatures, and to spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. This approach, which combines methods of statistical physics and scattering theory, is well suited to analyze many diverse phenomena. We illustrate its power and versatility by a number of examples, which show how the interplay of geometry and material properties helps to understand and control Casimir forces. We also examine whether electrodynamic Casimir forces can lead to stable levitation. Neglecting permeabilities, we prove that any equilibrium position of objects subject to such forces is unstable if the permittivities of all objects are higher or lower than that of the enveloping medium; the former being the generic case for ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics volume in Casimir physic

    NN Core Interactions and Differential Cross Sections from One Gluon Exchange

    Full text link
    We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic quark model using the ``quark Born diagram" formalism. This approach describes the scattering as a single interaction, here the one-gluon-exchange (OGE) spin-spin term followed by constituent interchange, with external nonrelativistic baryon wavefunctions attached to the scattering diagrams to incorporate higher-twist wavefunction effects. The short-range repulsive core in the NN interaction has previously been attributed to this spin-spin interaction in the literature; we find that these perturbative constituent-interchange diagrams do indeed predict repulsive interactions in all I,S channels of the nucleon-nucleon system, and we compare our results for the equivalent short-range potentials to the core potentials found by other authors using nonperturbative methods. We also apply our perturbative techniques to the NΔ\Delta and ΔΔ\Delta\Delta systems: Some ΔΔ\Delta\Delta channels are found to have attractive core potentials and may accommodate ``molecular" bound states near threshold. Finally we use our Born formalism to calculate the NN differential cross section, which we compare with experimental results for unpolarised proton-proton elastic scattering. We find that several familiar features of the experimental differential cross section are reproduced by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04, MIT-CTP-2187, ORNL-CCIP-93-0

    L-VRAP-a lunar volatile resources analysis package for lunar exploration

    Get PDF
    The Lunar Volatile Resources Analysis Package (L-VRAP) has been conceived to deliver some of the objectives of the proposed Lunar Lander mission currently being studied by the European Space Agency. The purpose of the mission is to demonstrate and develop capability; the impetus is very much driven by a desire to lay the foundations for future human exploration of the Moon. Thus, LVRAP has design goals that consider lunar volatiles from the perspective of both their innate scientific interest and also their potential for in situ utilisation as a resource. The device is a dual mass spectrometer system and is capable of meeting the requirements of the mission with respect to detection, quantification and characterisation of volatiles. Through the use of appropriate sampling techniques, volatiles from either the regolith or atmosphere (exosphere) can be analysed. Furthermore, since L-VRAP has the capacity to determine isotopic compositions, it should be possible for the instrument to determine the sources of the volatiles that are found on the Moon (be they lunar per se, extra-lunar, or contaminants imparted by the mission itself

    Neuroimaging and Responsibility Assessments

    Get PDF
    Could neuroimaging evidence help us to assess the degree of a person’s responsibility for a crime which we know that they committed? This essay defends an affirmative answer to this question. A range of standard objections to this high-tech approach to assessing people’s responsibility is considered and then set aside, but I also bring to light and then reject a novel objection—an objection which is only encountered when functional (rather than structural) neuroimaging is used to assess people’s responsibility

    POTENTIAL EFFECTS OF CLIMATE CHANGE ON ELEVATIONAL DISTRIBUTIONS OF TROPICAL BIRDS IN SOUTHEAST ASIA

    Get PDF
    Environmental conditions during the neonatal period can affect the growth, physiology, behavior, and immune function of birds. In many avian studies the nestling environment includes investigator handling of young, which may be stressful. While neonatal handling is known to affect the adult phenotype in rats, the effects of handling on development have rarely been examined in wild birds. We examined the effect of short, repeated periods of neonatal handling on avian growth and immune system development. We subjected American Kestrels (Falco sparverius) and European Starlings (Sturnus vulgaris) to 15 min of daily investigator handling throughout the nestling period, while controls remained undisturbed. Immediately prior to fledging we assessed cutaneous immunity, humoral immunity, mass, and degree of fluctuating asymmetry. Daily handling did not significantly affect any of these measurements. We also addressed the possibility that treatment differences would appear only when birds were challenged with a more substantial stressor by bringing birds into captivity for 24 hr. Captivity did not affect mass, but significantly lowered the cutaneous immune response, although this was independent of treatment. Therefore, brief periods of investigator handling did not appear to affect immune or morphological development in these species, whereas 24 hr of captivity resulted in suppressed cutaneous immune responses

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances rξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    Collisional and Radiative Processes in Optically Thin Plasmas

    Get PDF
    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail
    corecore