2,173 research outputs found

    Position-Based Multi-Agent Dynamics for Real-Time Crowd Simulation (MiG paper)

    Full text link
    Exploiting the efficiency and stability of Position-Based Dynamics (PBD), we introduce a novel crowd simulation method that runs at interactive rates for hundreds of thousands of agents. Our method enables the detailed modeling of per-agent behavior in a Lagrangian formulation. We model short-range and long-range collision avoidance to simulate both sparse and dense crowds. On the particles representing agents, we formulate a set of positional constraints that can be readily integrated into a standard PBD solver. We augment the tentative particle motions with planning velocities to determine the preferred velocities of agents, and project the positions onto the constraint manifold to eliminate colliding configurations. The local short-range interaction is represented with collision and frictional contact between agents, as in the discrete simulation of granular materials. We incorporate a cohesion model for modeling collective behaviors and propose a new constraint for dealing with potential future collisions. Our new method is suitable for use in interactive games.Comment: 9 page

    Electrical and Mechanical Properties of new Recyclable Power Cable Insulation Materials based upon Polyethylene Blends

    No full text
    Chemically crosslinked polyethylene (XLPE) has been used as electrical insulation for power cables since the 1970s due to its favourable combination of electrical and mechanical properties. However, as the electrical engineering community has become increasingly aware of the life cycle environmental impacts, XLPE has come under scrutiny for its lack of recyclability and the high process energies used in its manufacture. Although technologies are being developed to facilitate the re-use of XLPE at the end of its initial service life, the use of this material is inferior to fully recyclable and low process energy alternatives. In this investigation, we concentrated on the use of binary blends of linear and branched polyethylene (LPE / BPE) as potential replacement materials for XLPE, since such systems have the potential to combine comparable mechanical properties and enhanced breakdown strength with good recyclability. We compare the thin film AC ramp breakdown behaviour of blends as a function of temperature up to 97 oC. These consist of the same BPE in virgin and crosslinked states and in a blend with 20wt% LPE. These data are augmented with dynamic mechanical analysis. In concert, these data indicate that with appropriate morphological control the blended thermoplastic material exhibits superior properties to XLPE under conventional operating conditions and may even be suitable for higher temperature operation than XLPE. The paper will discuss the importance of polymer blending and blend physical properties in the context of the process requirements and the implications for cable manufacture and on cable electrical and environmental performance in comparison with XLPE

    The Legacy of ERA, Privatization and the Policy Ratchet

    Get PDF
    This article explores the ways in which the neo-liberal impetus toward the privatization of state schooling signalled in the Education Reform Act 1988 (ERA) has become embedded in the English school system. Four main points are made. First, that ERA itself was of huge strategic rather than substantive importance as far as privatization is concerned. Second, by tracing the lineage of privatization from ERA onwards a 'ratchet' effect of small and incremental policy moves can be identified, which have disseminated, embedded and naturalized privatization within public sector provision. Third, that while privatization has been taken up and taken much further by New Labour than it had been by the Conservatives there are differences between the two sets of governments in the role of privatization in education policy and the role of the state. Fourth, the participation of private providers in the planning and delivery of state services has put the private sector at the very heart of policy. At points the article draws upon interviews conducted with private sector providers. © 2008 Sage Publications

    Revealing voices?: North Korean Males and the South Korean Mediascape

    Get PDF
    Asian Studie

    A new mode of contrast in biological second harmonic generation microscopy

    Get PDF
    Enhanced image contrast in biological second harmonic imaging microscopy (SHIM) has previously been reported via quantitative assessments of forward- to epi-generated signal intensity ratio and by polarization analysis. Here we demonstrate a new form of contrast: the material-specific, wavelength-dependence of epi-generated second harmonic generation (SHG) excitation efficiency, and discriminate collagen and myosin by ratiometric epi-generated SHG images at 920 nm and 860 nm. Collagen shows increased SHG intensity at 920 nm, while little difference is detected between the two for myosin; allowing SHIM to characterize different SHG-generating components within a complex biological sample. We propose that momentum-space mapping of the second-order non-linear structure factor is the source of this contrast and develop a model for the forward and epi-generated SHG wavelength-dependence. Our model demonstrates that even very small changes in the assumed material fibrillar structure can produce large changes in the wavelength-dependency of epi-generated SHG. However, in the case of forward SHG, although the same changes impact upon absolute intensity at a given wavelength, they have very little effect on wavelength-dependency beyond the expected monotonic fall. We also propose that this difference between forward and epi-generated SHG provides an explanation for many of the wavelength-dependency discrepancies in the published literature

    (Supersymmetric) Kac-Moody Gauge Fields in 3+1 Dimensions

    Full text link
    Lagrangians for gauge fields and matter fields can be constructed from the infinite dimensional Kac-Moody algebra and group. A continuum regularization is used to obtain such generic lagrangians, which contain new nonlinear and asymmetric interactions not present in gauge theories based on compact Lie groups. This technique is applied to deriving the Yang-Mills and Chern-Simons lagrangians for the Kac-Moody case. The extension of this method to D=4, N=(1/2,0) supersymmetric Kac-Moody gauge fields is also made.Comment: 21 pages, no figures, latex. Minor change

    Scaling laws in hadronic processes and string theory

    Get PDF
    We propose a possible scheme for getting the known QCD scaling laws within string theory. In particular, we consider amplitudes for exclusive scattering of hadrons at large momentum transfer, hadronic form factors and distribution functions.Comment: 13 pages, 2 figures, a comment and a reference added, a final version to appear in Physical Review
    corecore