66 research outputs found

    4D, N = 1 Supersymmetry Genomics (I)

    Full text link
    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, N = 1 component descriptions of supermultiplets are associated with two integers - the numbers of c-V and t-V Adinkras that occur in the representation.Comment: 53 pages, 19 figures, Report-II of SSTPRS 2008 Added another chapter for clarificatio

    6D Supersymmetry, Projective Superspace and 4D, N=1 Superfields

    Full text link
    In this note, we establish the formulation of 6D, N=1 hypermultiplets in terms of 4D chiral-nonminimal (CNM) scalar multiplets. The coupling of these to 6D, N=1 Yang-Mills multiplets is described. A 6D, N=1 projective superspace formulation is given in which the above multiplets naturally emerge. The covariant superspace quantization of these multiplets is studied in details.Comment: 27 pages, LaTeX, minor changes, references adde

    Variant supercurrents and Noether procedure

    Full text link
    Consistent supercurrent multiplets are naturally associated with linearized off-shell supergravity models. In arXiv:1002.4932 we presented the hierarchy of such supercurrents which correspond to all the models for linearized 4D N = 1 supergravity classified a few years ago. Here we analyze the correspondence between the most general supercurrent given in arXiv:1002.4932 and the one obtained eight years ago in hep-th/0110131 using the superfield Noether procedure. We apply the Noether procedure to the general N = 1 supersymmetric nonlinear sigma-model and show that it naturally leads to the so-called S-multiplet, revitalized in arXiv:1002.2228.Comment: 6 page

    Correspondence between the 3-form and non-minimal multiplet in supersymmetry

    Get PDF
    In analogy to the chiral-linear multiplet correspondence we establish a relationship between the 3-form (or gaugino condensate) multiplet and a coupled non-minimal (0,1/2) multiplet, illustrated by a simple explicit example.Comment: 10 page

    Classification of irreps and invariants of the N-extended Supersymmetric Quantum Mechanics

    Full text link
    We present an algorithmic classification of the irreps of the NN-extended one-dimensional supersymmetry algebra linearly realized on a finite number of fields. Our work is based on the 1-to-1 \cite{pt} correspondence between Weyl-type Clifford algebras (whose irreps are fully classified) and classes of irreps of the NN-extended 1D supersymmetry. The complete classification of irreps is presented up to N≤10N\leq 10. The fields of an irrep are accommodated in ll different spin states. N=10 is the minimal value admitting length l>4l>4 irreps. The classification of length-4 irreps of the N=12 and {\em real} N=11 extended supersymmetries is also explicitly presented.\par Tensoring irreps allows us to systematically construct manifestly (NN-extended) supersymmetric multi-linear invariants {\em without} introducing a superspace formalism. Multi-linear invariants can be constructed both for {\em unconstrained} and {\em multi-linearly constrained} fields. A whole class of off-shell invariant actions are produced in association with each irreducible representation. The explicit example of the N=8 off-shell action of the (1,8,7)(1,8,7) multiplet is presented.\par Tensoring zero-energy irreps leads us to the notion of the {\em fusion algebra} of the 1D NN-extended supersymmetric vacua.Comment: Final version to appear in JHEP. 52 pages. The part with the complete classification of irreps (and the explicit presentation of length-4 irreps of N=9,10,11,12 and N=10 length-5 irreps) is unchanged. An extra section has been added with an entire class of off-shell invariant actions for arbitrary values N of the 1D extended supersymmetry. A non-trivial N=8 off-shell action for the (1,8,7) multiplet has been constructed as an example. It is obtained in terms of the octonionic structure constant

    Hyperkahler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace

    Get PDF
    Kahler manifolds have a natural hyperkahler structure associated with (part of) their cotangent bundles. Using projective superspace, we construct four-dimensional N = 2 models on the tangent bundles of some classical Hermitian symmetric spaces (specifically, the four regular series of irreducible compact symmetric Kahler manifolds, and their non-compact versions). A further dualization yields the Kahler potential for the hyperkahler metric on the cotangent bundle.Comment: 47 pages, typos corrected, version accepted by JHE

    The holographic RG flow in a field theory on a curved background

    Get PDF
    As shown by Freedman, Gubser, Pilch and Warner, the RG flow in N=4{\cal N}=4 super-Yang-Mills theory broken to an N=1{\cal N}=1 theory by the addition of a mass term can be described in terms of a supersymmetric domain wall solution in five-dimensional N=8{\cal N}=8 gauged supergravity. The FGPW flow is an example of a holographic RG flow in a field theory on a flat background. Here we put the field theory studied by Freedman, Gubser, Pilch and Warner on a curved AdS4AdS_4 background, and we construct the supersymmetric domain wall solution which describes the RG flow in this field theory. This solution is a curved (non Ricci flat) domain wall solution. This example demonstrates that holographic RG flows in supersymmetric field theories on a curved AdS4AdS_4 background can be described in terms of curved supersymmetric domain wall solutions.Comment: 14 pages, LaTe

    D-branes in N=2 Strings

    Full text link
    We study various aspects of D-branes in the two families of closed N=2 strings denoted by \alpha and \beta in hep-th/0211147. We consider two types of N=2 boundary conditions, A-type and B-type. We analyse the D-branes geometry. We compute open and closed string scattering amplitudes in the presence of the D-branes and discuss the results. We find that, except the space filling D-branes, the B-type D-branes decouple from the bulk. The A-type D-branes exhibit inconsistency. We construct the D-branes effective worldvolume theories. They are given by a dimensional reduction of self-dual Yang-Mills theory in four dimensions. We construct the D-branes gravity backgrounds. Finally, we discuss possible N=2 open/closed string dualities.Comment: 25 pages, Latex2

    Four dimensional "old minimal" N=2 supersymmetrization of R^4

    Get PDF
    We write in superspace the lagrangian containing the fourth power of the Weyl tensor in the "old minimal" d=4, N=2 supergravity, without local SO(2) symmetry. Using gauge completion, we analyze the lagrangian in components. We find out that the auxiliary fields which belong to the Weyl and compensating vector multiplets have derivative terms and therefore cannot be eliminated on-shell. Only the auxiliary fields which belong to the compensating nonlinear multiplet do not get derivatives and could still be eliminated; we check that this is possible in the leading terms of the lagrangian. We compare this result to the similar one of "old minimal" N=1 supergravity and we comment on possible generalizations to other versions of N=1,2 supergravity.Comment: 31 pages, no figures. Minor corrections. Details of the full calculation included as an appendix. Reference adde

    A Note on Flux Induced Superpotentials in String Theory

    Get PDF
    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction.Comment: 19 pages, no figure
    • …
    corecore