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Abstract

In analogy to the chiral-linear multiplet correspondence we establish a relationship

between the 3-form (or gaugino condensate) multiplet and a coupled non-minimal (0, 1/2)

multiplet, illustrated by a simple explicit example.
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1 Introduction

The scalar multiplet [1], commonly termed chiral multiplet, is the most popular

realization of the (0, 1/2) representation (massive or massless) of supersymmetry in terms

of local quantum fields. It contains as components a complex scalar, a Majorana spinor

and a complex scalar auxiliary field. Another realization of the same representation

(generally massless in this case) is provided by the linear multiplet [2], given in terms of a

real scalar, a 2-index antisymmetric tensor gauge field, a Majorana spinor and no auxiliary

field. Contrary to the previous one the linear multiplet is a gauge multiplet. In classical

Lagrangian field theory one can establish [3] a certain correspondence between the chiral

multiplet and the linear multiplet, sometimes referred to as chiral-linear multiplet duality,

in particular in applications where the linear multiplet incarnates a dilaton-axion multiplet.

In this note we would like to draw attention to yet another couple of realizations of the

(0, 1/2) representation, the 3-form multiplet [4] and a non-minimal (0, 1/2) multiplet [5],

including simple chiral multiplet couplings.

The 3-form multiplet made of a 3-index antisymmetric tensor gauge field, a complex

scalar, a Majorana spinor and a real auxiliary field may be understood as a further con-

strained chiral multiplet. It is the basic ingredient in the context of gaugino condensation,

but is also relevant in the theory of supersymmetric gauge anomalies and in the description

of curvature squared terms and Chern-Simons forms in supersymmetry. The non-minimal

(0, 1/2) multiplet, on the other hand, is less well known. In this note, we would like to

outline a relation with the 3-form multiplet in very much the same vein as the above men-

tioned chiral-linear correspondence. To be definite, we shall exhibit here a very simple

toy model, coupling the gaugino-condensate multiplet to a single generic chiral multiplet

and suggest a corresponding coupling of the non-minimal (0, 1/2) multiplet.

It may be worthwhile to comment briefly on the notion of gaugino condensate multi-

plet. In a supersymmetric gauge theory the gauge field-strength tensor is promoted to a

multiplet containing as superpartners the gaugino and a real bosonic auxiliary field. The

corresponding gaugino superfield, denoted Wα, W̄
α̇ is chiral (D̄α̇Wα = 0, DαW̄

α̇ = 0) and

subject to the additional constraint DαWα = D̄α̇W̄
α̇. Irrespectively of the mechanisms

underlying gaugino condensation, the constraints on Wα, W̄
α̇ imply that the condensate
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superfields tr(W αWα), tr(W̄α̇W̄
α̇) are not only chiral but fulfill the additional condition

D2 tr(W αWα) − D̄2 tr(W̄α̇W̄
α̇) = iεklmntr

(

F klFmn
)

.

Interestingly enough, this supermultiplet can be viewed as a particular realization of a

generic 3-form gauge theory in superspace with the 3-form gauge potential related to the

Chern-Simons form of the Yang-Mills theory.

2 The 3-Form Multiplet

In multiplets of supersymmetry different components may be assigned different R-

weights, in relation to their supersymmetry transformations and the chiral properties

of their generators [6]. As it seems reasonable to assign vanishing R-weight to gauge

potential components, the R-weights of their supersymmetry partners are then determined

correspondingly. Precisely in the case of Cklm(x), the 3-form gauge potential of the gaugino

condensate multiplet with vanishing R-weight, the weights of the other components are

dictated by supersymmetry: in units where r(θ) = r(D̄) = +1, r(θ̄) = r(D) = −1,

the complex scalar Y (x), Y (x) has r(Y ) = +2, r(Y ) = −2. The fermionic components

ηα(x), η̄α̇(x) acquire r(η) = +1, r(η̄) = −1, whereas H(x), the real auxiliary field has

r(H) = 0. Therefore, H(x) may constitute by itself an R-inert supersymmetric Lagrangian

in analogy with the Fayet-Iliopoulos D-term familiar in supersymmetric gauge theory.

In superfield language, the 3-form multiplet is characterized by the superfields Y, Y

subject to the chirality conditions

D̄α̇Y = 0, DαY = 0, (2.1)

and the additional constraint

D2Y − D̄2Y = −8i ∂C(x), (2.2)

with ∂C = −4

3
ǫklmn∂kClmn. These superfield relations have an interpretation as Bianchi

identities in superspace geometry [4], [7]. Component fields are identified as usual by

projection to lowest superfield components

Y = Y (x), D̄α̇Y =
√

2 η̄α̇(x), Y = Y (x), DαY =
√

2 ηα(x), (2.3)
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D2Y + D̄2Y = −8H(x), Clmn = Clmn(x). (2.4)

Supersymmetry transformations for these components read

δξCmlk =

√
2

16

(

ξ̄σ̄nη − ξσnη̄
)

εnmlk, (2.5)

δξY =
√

2 ξαηα, δξY =
√

2 ξ̄α̇η̄
α̇, (2.6)

δξηα =
√

2ξα (H + i∂C) + i
√

2(ξ̄σ̄mǫ)α∂mY, (2.7)

δξη̄
α̇ =

√
2ξ̄α̇ (H − i∂C) + i

√
2(ξσmǫ)α̇∂mY , (2.8)

δξH =
i√
2
(ξ̄σ̄m∂mη) +

i√
2
(ξσm∂mη̄). (2.9)

Taking care of the overall R-weights of Y and Y , invariant component field Lagrangians

may be obtained from (”D-term integration”)

LY Y =

∫

d2θd2θ̄ (Y Y ) = −∂mY ∂
mY +

i

2
(∂mησ

mη̄ − ησm∂mη̄) +H2 + ∂C2, (2.10)

the kinetic Lagrangian density and (”F -term integration”)

∫

d2θ Y +

∫

d2θ̄ Y = 2H(x), (2.11)

giving rise to the H-term referred to above.

Let us consider, as a very simple example, the coupling to a single chiral superfield3,

φ, of vanishing R-weight, i.e. adding a kinetic density

∫

d2θd2θ̄ φφ̄,

and generalizing (2.11) to

∫

d2θ Y U(φ) +

∫

d2θ̄ Y Ū(φ̄),

with U(φ), Ū(φ̄) at most quadratic in the renormalizable case.

3Component fields for φ are φ = A(x), Dαφ =
√

2χα(x), D2φ = −4F (x), likewise for φ̄.
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In fact, using the explicit solutions of the constraints (2.1, 2.2)

Y = −4D̄2 Ω, Y = −4D2 Ω, (2.12)

with Ω the real unconstrained pre-potential (undetermined up to a linear superfield pre-

gauge transformation) and employing integration by parts in superspace, the complete

action density may be written as a pure D-term integration

∫

d2θd2θ̄
[

Y Y + φφ̄+ 16Ω
(

U(φ) + Ū(φ̄)
)

]

, (2.13)

with suitable superfield equations of motion.

3 A simple model

In this section, we consider a particular combination of the 3-form and a chiral

multiplet in choosing U(φ) = α + µφ, µ ∈ R, giving rise to the superfield action density:

∫

d2θd2θ̄
(

φφ̄+ Y Y
)

+

∫

d2θ (α + µφ)Y +

∫

d2θ̄
(

ᾱ + µφ̄
)

Y . (3.1)

At the component field level, this action contains the kinetic terms for A, Ā, χ, χ̄ (chi-

ral multiplet) and Y, Y , η, η̄ (3-form multiplet), mixing terms of these with F, F̄ (chiral

multiplet), H (3-form multiplet) and, last but not least, the terms containing ∂C, the

field-strength of the 3-index antisymmetric gauge potential.

In many cases, in supersymmetric field theories, elimination of auxiliary fields means

rather diagonalization in terms of non propagating fields (no derivative terms in the action

density) with trivial algebraic equations of motion. In the case at hand, this can be done

easily for the part of the action density containing F, F̄ and H , yielding

L = −∂mA∂mĀ− i

2
(χσm∂mχ̄+ χ̄σ̄m∂mχ) − ∂mY ∂

mY − i

2
(ησm∂mη̄ + η̄σ̄m∂mη)

−µ (χη + χ̄η̄) − |µ Y |2 − |α + µA|2 +

[

∂C +
i

2

(

α− ᾱ + µ (A− Ā)
)

]2

+F F + HH, (3.2)
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with diagonalized auxiliary fields

F = F + µY , F = F̄ + µY, H = H +
1

2
(α + ᾱ) +

µ

2
(A+ Ā). (3.3)

The complex scalar Y, Y satisfies a Klein-Gordon equation with mass µ, the Weyl

spinors η, χ̄, combine into a Dirac spinor of the same mass. The equations of motion for

the fields A, Ā, Cklm are most conveniently written using A = A1 + iA2, α = α1 + iα2, so

that

2A1 − µ2

(

A1 +
α1

µ

)

= 0, (3.4)

2A2 − µ∂C = 0, (3.5)

∂m (∂C − µA2) = 0. (3.6)

The last equation is compatible with a constant K2 = ∂C − µA2, giving rise to a shifted

Klein-Gordon equation for A2

(2 − µ2)

(

A2 +
α2 +K2

µ

)

= 0. (3.7)

We would like to stress that these features arise necessarily in the context of models

dealing with gaugino condensation.

4 The X − Y Correspondence

Independently of supersymmetry, the 3-index antisymmetric gauge potential Cklm

has been employed in the context of the cosmological constant problem [8], [9]. The

derivative quadratic action density is proportional to (∂C)2. This density can be related

to a constant considering the density

X2 +X∂C

with X(x) a real field. Varying with respect toX and substituting back reproduces (∂C)2.

On the other hand, varying with respect to Cklm implies ∂mX = 0, i.e. X a constant.
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This mechanism can be extended to the supersymmetric case, e.g. the 3-form multi-

plet. Here we consider the combination

∫

d2θd2θ̄
[

−XX −XY − Y X + 16Ω
(

U(φ) + Ū(φ̄)
)

+ φφ̄
]

. (4.1)

X,X is a complex unconstrained superfield, Y, Y , the 3-form superfield introduced above

and Ω its unconstrained real pre-potential. φ, φ̄ are considered as spectator superfields.

Varying with respect to X,X just implies X = Y , X = Y and one recovers (2.13) upon

substitution. As to variation with respect to the 3-form multiplet we shall use the solution

(2.12) of the constraints and integration by parts in superspace to arrive at

∫

d2θd2θ̄
[

−XX + 4Ω
(

D̄2X +D2X + 4U(φ) + 4Ū(φ̄)
)

+ φφ̄
]

, (4.2)

where Ω may be considered as a Lagrange multiplier superfield giving rise to a constraint

D̄2X +D2X + 4U(φ) + 4Ū(φ̄) = 0, (4.3)

that can be separated into two constraints

D̄2X = −4U(φ) − 4K, D2X = −4Ū(φ̄) − 4K̄, (4.4)

related by a constant K = −K̄ = iK2, which might be absorbed in a redefinition of

U(φ), Ū(φ̄). In other words, in supersymmetry, the analogue of the constant mentioned

above (in the non supersymmetric case) is given by a complex superfield, X,X.

The component field action is then obtained from

∫

d2θd2θ̄
[

−XX + φφ̄
]

. (4.5)

In the case U = 0, this multiplet has been presented in [5]. We shall call it non-minimal

in what follows and use the term coupled non-minimal in the case of non vanishing U , to

be discussed in the next section.
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5 The coupled non-minimal multiplet

The superfield constraints (4.4) determine a multiplet of 12 bosonic and 12 fermionic

component field degrees of freedom, identified as usual by successive applications of co-

variant spinor derivatives. We define the component fields contained in X as

X = X, DαX =
√

2ψα, D̄α̇X = −
√

2 ω̄α̇,

D̄α̇DαX = Vα
α̇, D̄α̇D2X = −4ρ̄α̇, D2X = −4E. (5.6)

Observe that the θ̄2 component is given in terms of A, Cf.(4.4). For X we define similarly

X = X, DαX = −
√

2ωα, D̄α̇X =
√

2 ψ̄α̇,

DαD̄
α̇X = V̄α

α̇, DαD̄
2X = −4ρα, D̄2X = −4Ē. (5.7)

Projecting 1

16
DD̄2D(−XX) to lowest components gives the canonical component field

action density4

LX = −∂mX∂
mX − i

2
(ωσm∂m ω̄ + ω̄σ̄m∂m ω) (5.8)

−|U |2 − U ′
(

XF + ωχ
)

− Ū ′
(

XF̄ + ω̄χ̄
)

+
1

2
XU ′′(χχ) +

1

2
XŪ ′′(χ̄χ̄)

−1

2
VmV̄

m −EĒ − i

2
ψ

(

σm∂m ψ̄ + i
√

2ρ
)

− i

2
ψ̄

(

σ̄m∂m ψ + i
√

2ρ̄
)

,

describing a complex scalar X and a Majorana spinor ω as physical fields. Auxiliary fields

consist of a complex scalar E, a complex vector Vm, and 2 Majorana spinors ψ, ρ. This

action density is invariant under supersymmetry transformations:

δξX =
√

2 (ξψ − ξ̄ω̄), δξX =
√

2 (ξ̄ψ̄ − ξω),

δξψα =
√

2E ξα − 1√
2
Vm (ξ̄σ̄mǫ)α, δξψ̄

α̇ =
√

2Ē ξ̄α̇ − 1√
2
V̄m(ξσmǫ)α̇,

δξω̄
α̇ = −

√
2Uξ̄α̇ − 1√

2
(Vm + 2i∂mX)(ξσmǫ)α̇,

δξωα = −
√

2Ūξα − 1√
2

(V̄m + 2i∂mX)(ξ̄σ̄mǫ)α,

4Primes indicate derivatives with respect to A or Ā, as the case may be.
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δξ Vm = (ξσmρ̄) +
√

2i (ξσnσ̄m∂
nψ − ξ̄σ̄mσn∂

nω̄) − (ξ̄σ̄mχ)U ′,

δξ V̄m = (ξ̄σ̄mρ) +
√

2i (ξ̄σ̄nσm∂
nψ̄ − ξσmσ̄n∂

nω) − (ξσmχ̄)Ū ′,

δξρ̄
α̇ = 2i ∂mE (ξσmǫ)α̇ + (2i∂mV

m − 22X − U ′′χχ+ 2U ′F ) ξ̄α̇,

δξρα = 2i ∂mĒ (ξ̄σ̄mǫ)α + (2i∂mV̄
m − 22X − Ū ′′χ̄χ̄+ 2Ū ′F̄ ) ξα ,

δξE = ξ̄ ρ̄, δξĒ = ξ ρ,

δξD̄
2X = −4

√
2U ′(ξχ), δξD

2X = −4
√

2Ū ′(ξ̄χ̄). (5.9)

Adding the kinetic Lagrangian for φ

LS = −∂mA∂mĀ− i

2
(χσm∂m χ̄+ χ̄σ̄m∂m χ) + FF̄ , (5.10)

the complete Lagrangian is

L = −∂mA∂mĀ− i

2
(χσm∂m χ̄+ χ̄σ̄m∂m χ) − ∂mX∂

mX − i

2
(ωσm∂m ω̄ + ω̄σ̄m∂m ω)

−U ′(A)ωχ− Ū ′(Ā) ω̄χ̄− |U ′(A)|2XX − |U(A)|2

+
1

2
XU ′′(A)(χχ) +

1

2
XŪ ′′(Ā)(χ̄χ̄) + F F − 1

2
VmV̄

m − EĒ

− i

2
ψ

(

σm∂m ψ̄ + i
√

2ρ
)

− i

2
ψ̄

(

σ̄m∂m ψ + i
√

2ρ̄
)

, (5.11)

with

F = F −XŪ ′, F = F̄ −XU ′, (5.12)

and exhibiting the general scalar potential

V = |U ′(A)|2XX + |U(A)|2. (5.13)

In order to make contact with the simple model of section 3, we set U(A) = α +

µA, Ū(Ā) = ᾱ + µĀ. Then (5.11) describes two complex scalar fields and a Dirac field

with common mass µ, just like the Lagrangian (3.2). The difference between the two

Lagrangians appears in the auxiliary field sector and, correspondingly, in the component

field supersymmetry transformations. Moreover, it should be stressed that Y, Y repre-

sents a gauge multiplet, whereas X,X does not; this is also the case for the linear-chiral

multiplet correspondence.

8



6 Conclusions

The main purpose of this short communication was to establish a correspondence

between the 3-form multiplet and a non-minimal multiplet, in analogy to the well-known

relation between the 2-form (i.e. linear) multiplet and the chiral multiplet. Observe

that in both cases the correspondence can only be established under certain restrictive

assumptions.

Although the 3-form multiplet and the non-minimal multiplet might be considered as

exotic multiplets, they are not. As indicated in the introduction, the 3-form multiplet

describes naturally the gaugino squared chiral superfield tr (W αWα) and its complex

conjugate. On the other hand, the non-minimal multiplet appears naturally in the context

of the solution of the chiral superfield constraints, i.e. φ = D̄2ϕ, φ̄ = D2ϕ̄, in terms of

unconstrained potentials ϕ, ϕ̄, defined up to pre-gauge transformations ϕ → ϕ + ξ, ϕ̄ →
ϕ̄+ ξ̄. These superfields are themselves subject to the pre-constraints D̄2ξ = 0, D2ξ̄ = 0,

leaving φ, φ̄ invariant.

Let us mention as well that the above-mentioned 3-form constraints appear in an

intriguing way in supergravity, in the framework of U(1) superspace. The chiral super-

gravity superfields R,R† are intertwined with the vector superfield Ga through the relation

D2R − D̄2R† = 4iDaGa. Remarkably enough, here, the H-term of R,R† corresponds to

a D-term of the U(1) supergravity sector.

The emphasis of the present note was to draw attention to the basic features of the

correspondence between the 3-form multiplet and the non-minimal multiplet restricting

ourselves to quite elementary considerations. More involved structures as well as the

corresponding supergravity couplings will be the subject of forthcoming publications.

References

[1] J. Wess and B. Zumino. Supergauge transformations in four dimensions. Nucl. Phys.,

B70:39, 1974.

[2] S. Ferrara, B. Zumino, and J. Wess. Supergauge multiplets and superfields. Phys.

Lett., 51B:239–241, 1974.

9



[3] W. Siegel. Gauge spinor superfield as scalar multiplet. Phys. Lett., 85B:333–334, 1979.

[4] S. J. Gates, Jr. Super p-form gauge superfields. Nucl. Phys., B184:381–390, 1981.

[5] Jr. Gates, S. James and W. Siegel. Variant superfield representations. Nucl. Phys.,

B187:389, 1981.

[6] P. Fayet and S. Ferrara. Supersymmetry. Phys. Rep. 32C, pages 249–334, 1977.

[7] P. Binétruy, F. Pillon, G. Girardi, and R. Grimm. The 3-form multiplet in supergrav-

ity. Nucl. Phys., B477:175–199, 1996.

[8] S. W. Hawking. The cosmological constant is probably zero. Phys. Lett., 134B:403,

1984.

[9] M. Duff. The cosmological constant is possibly zero, but the proof is probably wrong.

Phys. Lett., B226:36, 1989.

10


