552 research outputs found

    Estimation of Fiber Orientations Using Neighborhood Information

    Full text link
    Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.Comment: Journal paper accepted in Medical Image Analysis. 35 pages and 16 figure

    Bη(η)K(π)B \to \eta(\eta') K(\pi) in the Standard Model with Flavor Symmetry

    Full text link
    The observed branching ratios for BKηB\to K \eta' decays are much larger than factorization predictions in the Standard Model (SM). Many proposals have been made to reconcile the data and theoretical predictions. In this paper we study these decays within the SM using flavor U(3) symmetry. If small annihilation amplitudes are neglected, one needs 11 hadronic parameters to describe BPPB\to PP decays where PP can be one of the π\pi, KK, η\eta and η\eta' nonet mesons. We find that existing data are consistent with SM with flavor U(3) symmetry. We also predict several measurable branching ratios and CP asymmetries for BK(π)η(η)B \to K (\pi) \eta(\eta'), η(η)η(η)\eta(\eta')\eta(\eta') decays. Near future experiments can provide important tests for the Standard Model with flavor U(3) symmetry.Comment: 13 pages, 4 table

    Charmless BPPB \to PP decays using flavor SU(3) symmetry

    Full text link
    The decays of BB mesons to a pair of charmless pseudoscalar (PP) mesons are analyzed within a framework of flavor SU(3). Symmetry breaking is taken into account in tree (TT) amplitudes through ratios of decay constants; exact SU(3) is assumed elsewhere. Acceptable fits to BππB \to \pi \pi and BKπB \to K \pi branching ratios and CP asymmetries are obtained with tree, color-suppressed (CC), penguin (PP), and electroweak penguin (PEWP_{EW}) amplitudes. Crucial additional terms for describing processes involving η\eta and η\eta' include a large flavor-singlet penguin amplitude (SS) as proposed earlier and a penguin amplitude PtuP_{tu} associated with intermediate tt and uu quarks. For the B+π+ηB^+ \to \pi^+ \eta' mode a term StuS_{tu} associated with intermediate tt and uu quarks also may be needed. Values of the weak phase γ\gamma are obtained consistent with an earlier analysis of BVPB \to VP decays, where VV denotes a vector meson, and with other analyses of CKM parameters.Comment: 26 pages, 1 figure. To be submitted to Phys. Rev. D. Reference update

    Charmless hadronic decays BPP,PV,VVB \to PP, PV, VV and new physics effects in the general two-Higgs doublet models

    Get PDF
    Based on the low-energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to the branching ratios of the two-body charmless hadronic decays of BuB_u and BdB_d mesons induced by the new gluonic and electroweak charged-Higgs penguin diagrams in the general two-Higgs doublet models (models I, II and III). Within the considered parameter space, we find that: (a) the new physics effects from new gluonic penguin diagrams strongly dominate over those from the new γ\gamma- and Z0Z^0- penguin diagrams; (b) in models I and II, new physics contributions to most studied B meson decay channels are rather small in size: from -15% to 20%; (c) in model III, however, the new physics enhancements to the penguin-dominated decay modes can be significant, (30200)\sim (30 -200)%, and therefore are measurable in forthcoming high precision B experiments; (d) the new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in model III, (3570)\sim (35 -70)%, and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B \to K \etap decay rates; (e) the theoretical predictions for B(BK+π){\cal B}(B \to K^+ \pi) and B(BK0π+){\cal B}(B \to K^0 \pi^+) in model III are still consistent with the data within 2σ2\sigma errors; (f) the significant new physics enhancements to the branching ratios of BK0π0,Kη,K+π,K+ϕ,K0ω,K+ϕB \to K^0 \pi^0, K^* \eta, K^{*+} \pi^-, K^+ \phi, K^{*0} \omega, K^{*+} \phi and K0ϕK^{*0} \phi decays are helpful to improve the agreement between the data and the theoretical predictions; (g) the theoretical predictions of B(BPP,PV,VV){\cal B}(B \to PP, PV, VV) in the 2HDM's are generally consistent with experimental measurements and upper limits (9090% C.L.)Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections, final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4

    Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control

    Get PDF
    We discuss a recent approach to investigating cognitive control, which has the potential to deal with some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a formal, computational model that performs the task at hand and whose performance matches that of a research participant. The internal variables in such a model might then be taken as proxies for latent variables computed in the brain. We discuss the potential advantages of such an approach for the study of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions underlying the interpretation of data obtained using this approach

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN

    Radiative Decay Modes of the D0D^{0} Meson

    Get PDF
    Using data recorded by the CLEO-II detector at CESR we have searched for four radiative decay modes of the D0D^0 meson: D0ϕγD^0\to\phi\gamma, D0ωγD^0\to\omega\gamma, D0KˉγD^0\to\bar{K}^{*}\gamma, and D0ρ0γD^0\to\rho^0\gamma. We obtain 90% CL upper limits on the branching ratios of these modes of 1.9×1041.9\times 10^{-4}, 2.4×1042.4\times 10^{-4}, 7.6×1047.6\times 10^{-4} and 2.4×1042.4\times 10^{-4} respectively.Comment: 15 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Measurement of the Mass Splittings between the bbˉχb,J(1P)b\bar{b}\chi_{b,J}(1P) States

    Full text link
    We present new measurements of photon energies and branching fractions for the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the chi_b states are determined from the measured radiative photon energies. The ratio of mass splittings between the chi_b substates, r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information on the nature of the bbbar confining potential. We find r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world average, but more consistent with the theoretical expectation that r(1P)<r(2P); i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde
    corecore