102 research outputs found
Three-body recombination rates near a Feshbach resonance within a two-channel contact interaction model
We calculate the three-body recombination rate into a shallow dimer in a gas
of cold bosonic atoms near a Feshbach resonance using a two-channel contact
interaction model. The two-channel model naturally describes the variation of
the scattering length through the Feshbach resonance and has a finite effective
range. We confront the theory with the available experimental data and show
that the two-channel model is able to quantitatively describe the existing
data. The finite effective range leads to a reduction of the scaling factor
between the recombination minima from the universal value of 22.7. The
reduction is larger for larger effective ranges or, correspondingly, for
narrower Feshbach resonances.Comment: 9 pages, 7 figure
Universal physics of 2+1 particles with non-zero angular momentum
The zero-energy universal properties of scattering between a particle and a
dimer that involves an identical particle are investigated for arbitrary
scattering angular momenta. For this purpose, we derive an integral equation
that generalises the Skorniakov - Ter-Martirosian equation to the case of
non-zero angular momentum. As the mass ratio between the particles is varied,
we find various scattering resonances that can be attributed to the appearance
of universal trimers and Efimov trimers at the collisional threshold.Comment: 6 figure
Dimer-atom-atom recombination in the universal four-boson system
The dimer-atom-atom recombination process in the system of four identical
bosons with resonant interactions is studied. The description uses the exact
Alt, Grassberger and Sandhas equations for the four-particle transition
operators that are solved in the momentum-space framework. The dimer-dimer and
atom-trimer channel contributions to the ultracold dimer-atom-atom
recombination rate are calculated. The dimer-atom-atom recombination rate
greatly exceeds the three-atom recombination rate.Comment: 10 pages, 3 figures, accepted for publication in Few-Body System
Efimov Trimers near the Zero-crossing of a Feshbach Resonance
Near a Feshbach resonance, the two-body scattering length can assume any
value. When it approaches zero, the next-order term given by the effective
range is known to diverge. We consider the question of whether this divergence
(and the vanishing of the scattering length) is accompanied by an anomalous
solution of the three-boson Schr\"odinger equation similar to the one found at
infinite scattering length by Efimov. Within a simple zero-range model, we find
no such solutions, and conclude that higher-order terms do not support Efimov
physics.Comment: 8 pages, no figures, final versio
Universality in Four-Boson Systems
We report recent advances on the study of universal weakly bound four-boson
states from the solutions of the Faddeev-Yakubovsky equations with zero-range
two-body interactions. In particular, we present the correlation between the
energies of successive tetramers between two neighbor Efimov trimers and
compare it to recent finite range potential model calculations. We provide
further results on the large momentum structure of the tetramer wave function,
where the four-body scale, introduced in the regularization procedure of the
bound state equations in momentum space, is clearly manifested. The results we
are presenting confirm a previous conjecture on a four-body scaling behavior,
which is independent of the three-body one. We show that the correlation
between the positions of two successive resonant four-boson recombination peaks
are consistent with recent data, as well as with recent calculations close to
the unitary limit. Systematic deviations suggest the relevance of range
corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted
to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems,
October 2011, Erice, Sicily, Ital
A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity
Many Gram-positive bacteria produce lipoteichoic acid (LTA) polymers whose physiological roles have remained a matter of debate because of the lack of LTA-deficient mutants. The ypfP gene responsible for biosynthesis of a glycolipid found in LTA was deleted in Staphylococcus aureus SA113, causing 87% reduction of the LTA content. Mass spectrometry and nuclear magnetic resonance spectroscopy revealed that the mutant LTA contained a diacylglycerol anchor instead of the glycolipid, whereas the remaining part was similar to the wild-type polymer except that it was shorter. The LTA mutant strain revealed no major changes in patterns of cell wall proteins or autolytic enzymes compared with the parental strain indicating that LTA may be less important in S. aureus protein attachment than previously thought. However, the autolytic activity of the mutant was strongly reduced demonstrating a role of LTA in controlling autolysin activity. Moreover, the hydrophobicity of the LTA mutant was altered and its ability to form biofilms on plastic was completely abrogated indicating a profound impact of LTA on physicochemical properties of bacterial surfaces. We propose to consider LTA and its biosynthetic enzymes as targets for new antibiofilm strategies
Efimov physics beyond universality
We provide an exact solution of the Efimov spectrum in ultracold gases within
the standard two-channel model for Feshbach resonances. It is shown that the
finite range in the Feshbach coupling makes the introduction of an adjustable
three-body parameter obsolete. The solution explains the empirical relation
between the scattering length a_- where the first Efimov state appears at the
atom threshold and the van der Waals length l_vdw for open channel dominated
resonances. There is a continuous crossover to the closed channel dominated
limit, where the scale in the energy level diagram as a function of the inverse
scattering length 1/a is set by the intrinsic length r* associated with the
Feshbach coupling. Our results provide a number of predictions for
non-universal ratios between energies and scattering lengths that can be tested
in future experiments.Comment: 6 pages, 4 figures; final versio
TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma
Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit
The qualitative transparency deliberations: insights and implications
In recent years, a variety of efforts have been made in political science to enable, encourage, or require scholars to be more open and explicit about the bases of their empirical claims and, in turn, make those claims more readily evaluable by others. While qualitative scholars have long taken an interest in making their research open, reflexive, and systematic, the recent push for overarching transparency norms and requirements has provoked serious concern within qualitative research communities and raised fundamental questions about the meaning, value, costs, and intellectual relevance of transparency for qualitative inquiry. In this Perspectives Reflection, we crystallize the central findings of a three-year deliberative process—the Qualitative Transparency Deliberations (QTD)—involving hundreds of political scientists in a broad discussion of these issues. Following an overview of the process and the key insights that emerged, we present summaries of the QTD Working Groups’ final reports. Drawing on a series of public, online conversations that unfolded at www.qualtd.net, the reports unpack transparency’s promise, practicalities, risks, and limitations in relation to different qualitative methodologies, forms of evidence, and research contexts. Taken as a whole, these reports—the full versions of which can be found in the Supplementary Materials—offer practical guidance to scholars designing and implementing qualitative research, and to editors, reviewers, and funders seeking to develop criteria of evaluation that are appropriate—as understood by relevant research communities—to the forms of inquiry being assessed. We dedicate this Reflection to the memory of our coauthor and QTD working group leader Kendra Koivu
- …