18 research outputs found

    Sistema de reprodução em populações de Eschweilera ovata (Cambess.) Miers Mating system in Eschweilera ovata (Cambess.) Miers populations

    No full text
    O sistema de reprodução de duas populações de Eschweilera ovata foi quantificado por análise de isoenzimas em estrutura de progênies usando os modelos misto de reprodução e cruzamentos correlacionados. Desvios do modelo misto de reprodução foram evidenciados entre as freqüências alélicas dos óvulos e do pólen e pela heterogeneidade nas freqüências alélicas do pólen que fecundou as diferentes árvores. A taxa de cruzamento multilocos foi alta em ambas populações Camarugipe (t m =0,999&plusmn;0,004) e Itaparica (t m=0,985&plusmn;0,023). A alta variação na taxa de cruzamento individual (t variando de 0,320 a 1,000) indicou que a espécie não é auto-incompatível. Diferenças positivas e significativamente diferentes de zero foram detectadas entre a taxa de cruzamento multiloco e uniloco, indicando cruzamentos endogâmicos em ambas populações Camarugipe (t m-t s =0,066&plusmn;0,014) e Itaparica (t m-t s =0,073&plusmn;0,016) e possível estruturação genética espacial. Valores altos de cruzamentos biparentais foram detectados nas populações (Camarugipe, r p=0,577&plusmn;0,088; Itaparica r p =0,423&plusmn;0,070), demonstrando que as progênies são constituídas principalmente por misturas de meios-irmãos e irmãos-completos. O coeficiente de coancestria nas progênies de ambas as populações (Camarugipe, tetaxy=0,211; Itaparica tetaxy =0,191) foi superior ao esperado em progênies de meios irmãos (0,125). Os resultados foram discutidos sob a ótica de amostragens para melhoramento, conservação genética e coleta de sementes para recuperação ambiental.<br>The mating system of two populations of Eschweilera ovata was studied by allozymes analysis of progeny arrays using the mixed-mating model and correlated mating model. Deviations from mixed-mating model were evident from differences in pollen and ovule allele frequencies and allele frequency heterogeneity of pollen pools that fertilized the different trees. The multilocus outcrossing rate was high in both Camarugipe (t m=0.999&plusmn;0.004) and Itaparica populations (t m=0.985&plusmn;0.023). The high variation in individual outcrossing rate (t ranged from 0.320 to 1.000) indicated that the species is not self-incompatible. Positive differences and significantly different from zero between multilocus and single locus outcrossing rate were detected, indicating biparental inbreeding in both Camarugipe (t m - t s=0.066&plusmn;0.014) and Itaparica populations (t m - t s=0.073&plusmn;0.016) and possible spatial genetic structuring. Higher values of correlated mating were detected in the populations (Camarugipe, r p=0.577&plusmn;0.088; Itaparica r p=0.423&plusmn;0.070), showing that the families consisted mainly of half-sib and full-sib mixtures. The coancestry coefficient within families from both populations (Camarugipe, thetaxy=0.211; Itaparica thetaxy=0.191) was higher than the expected in half-sib families (0.125). The results were discussed from the point of view of sampling for improvement, genetic conservation and seed collection aiming at environmental recovery

    Erythropoietin Neuroprotection in the Term and Preterm Infant: Safety and Efficacy

    No full text

    Pines

    Get PDF
    Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia. Their natural range reaches the equator only in Southeast Asia. In Africa, natural occurrences are confined to the Mediterranean basin. Pines grow at various elevations from sea level (not usual in tropical areas) to highlands. Two main regions of diversity are recorded, the most important one in Central America (43 species found in Mexico) and a secondary one in China. Some species have a very wide natural range (e.g., P. ponderosa, P. sylvestris). Pines are adapted to a wide range of ecological conditions: from tropical (e.g., P. merkusii, P. kesiya, P. tropicalis), temperate (e.g., P. pungens, P. thunbergii), and subalpine (e.g., P. albicaulis, P. cembra) to boreal (e.g., P. pumila) climates (Richardson and Rundel 1998, Burdon 2002). They can grow in quite pure stands or in mixed forest with other conifers or broadleaved trees. Some species are especially adapted to forest fires, e.g., P. banksiana, in which fire is virtually essential for cone opening and seed dispersal. They can grow in arid conditions, on alluvial plain soils, on sandy soils, on rocky soils, or on marsh soils. Trees of some species can have a very long life as in P. longaeva (more than 3,000 years)
    corecore