774 research outputs found
Exogenous Estrogen Boosts Circulating Estradiol Concentrations and Calcium Uptake by Duodenal Tissue in Heat-Stressed Hens
In the hen, heat stress (HS) disrupts shell calcification and reproductive processes, including hormone synthesis and egg production. Two studies were conducted to investigate palliative effects of exogenous estrogen or dietary vitamin D3 on Ca homeostasis and reproductive physiology during HS. Study 1: Hy-Line W36 hens were randomly assigned to thermoneutral (TN) or HS treatments and to 1 of 7 estrogen treatments: zero (control) or one Compudose 200 implant given 1, 2, 3, 8, 9, or 10 d before onset of HS. With no implant, HS reduced plasma estradiol (E2) and total Ca absorbed (CaT) by duodenal cells (P \u3c 0.05). In TN hens with implants, plasma E2 tripled within 24 h (P \u3c 0.05) and remained elevated (P \u3c 0.05) through d 9. In HS hens with implants, plasma E2 rose 6-fold (P \u3c 0.05) to equal TN+E2 concentrations and remained elevated through d 10. In TN and HS hens with implants, the rate of Ca absorption (CaTR) and CaT increased dramatically; the responses were quadratic and essentially identical. Study 2: Hy-Line W36 hens were provided diets formulated either according to NRC requirements (NRC, 1994), or with the addition of 22,000 IU/kg vitamin D3 (+VD hens). A 24-h HS episode was imposed 2 wk after initiation of the dietary regimen. Duodenal samples were collected for Ca absorption assays after the 24-h HS episode. Both CaTR and CaT in +VD hens were approximately 3-fold higher than in hens in the NVD group (P = 0.102). The results lead to the conclusion that exogenous estrogen, high levels of dietary vitamin D, or both, before a HS episode, are efficacious in alleviating at least some of the effects of HS and should be further investigated
Giant Shapiro steps for two-dimensional Josephson-junction arrays with time-dependent Ginzburg-Landau dynamics
Two-dimensional Josephson junction arrays at zero temperature are
investigated numerically within the resistively shunted junction (RSJ) model
and the time-dependent Ginzburg-Landau (TDGL) model with global conservation of
current implemented through the fluctuating twist boundary condition (FTBC).
Fractional giant Shapiro steps are found for {\em both} the RSJ and TDGL cases.
This implies that the local current conservation, on which the RSJ model is
based, can be relaxed to the TDGL dynamics with only global current
conservation, without changing the sequence of Shapiro steps. However, when the
maximum widths of the steps are compared for the two models some qualitative
differences are found at higher frequencies. The critical current is also
calculated and comparisons with earlier results are made. It is found that the
FTBC is a more adequate boundary condition than the conventional uniform
current injection method because it minimizes the influence of the boundary.Comment: 6 pages including 4 figures in two columns, final versio
Langevin Simulations of Two Dimensional Vortex Fluctuations: Anomalous Dynamics and a New -exponent
The dynamics of two dimensional (2D) vortex fluctuations are investigated
through simulations of the 2D Coulomb gas model in which vortices are
represented by soft disks with logarithmic interactions. The simulations
trongly support a recent suggestion that 2D vortex fluctuations obey an
intrinsic anomalous dynamics manifested in a long range 1/t-tail in the vortex
correlations. A new non-linear IV-exponent a, which is different from the
commonly used AHNS exponent, a_AHNS and is given by a = 2a_AHNS - 3, is
confirmed by the simulations. The results are discussed in the context of
earlier simulations, experiments and a phenomenological description.Comment: Submitted to PRB, RevTeX format, 28 pages and 13 figures, figures in
postscript format are available at http://www.tp.umu.se/~holmlund/papers.htm
Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering
We propose that neutrino-proton elastic scattering, ,
can be used for the detection of supernova neutrinos in scintillator detectors.
Though the proton recoil kinetic energy spectrum is soft, with , and the scintillation light output from slow, heavily ionizing
protons is quenched, the yield above a realistic threshold is nearly as large
as that from . In addition, the measured proton
spectrum is related to the incident neutrino spectrum, which solves a
long-standing problem of how to separately measure the total energy and
temperature of , , , and .
The ability to detect this signal would give detectors like KamLAND and
Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
Asteroseismology of Eclipsing Binary Stars in the Kepler Era
Eclipsing binary stars have long served as benchmark systems to measure
fundamental stellar properties. In the past few decades, asteroseismology - the
study of stellar pulsations - has emerged as a new powerful tool to study the
structure and evolution of stars across the HR diagram. Pulsating stars in
eclipsing binary systems are particularly valuable since fundamental properties
(such as radii and masses) can determined using two independent techniques.
Furthermore, independently measured properties from binary orbits can be used
to improve asteroseismic modeling for pulsating stars in which mode
identifications are not straightforward. This contribution provides a review of
asteroseismic detections in eclipsing binary stars, with a focus on space-based
missions such as CoRoT and Kepler, and empirical tests of asteroseismic scaling
relations for stochastic ("solar-like") oscillations.Comment: 28 pages, 12 figures, 2 tables; Proceedings of the AAS topical
conference "Giants of Eclipse" (AASTCS-3), July 28 - August 2 2013, Monterey,
C
Low-lying dipole response of 64Ni
Two complementary real-photon scattering experiments were conducted on the proton-magic 64 Ni nucleus to study the dipole response up to its neutron-separation energy of S n = 9.7 MeV . By combining both measurements, 87 E 1 and 23 M 1 transitions were identified above 4.3 MeV. The results of the observed M 1 transitions were compared to shell-model calculations using two different model spaces. It was found that the inclusion of excitations across the Z = 28 shell gap in the calculations has a large impact. Furthermore, average cross sections for decays to the ground state (elastic transitions) as well as to lower-lying excited states (inelastic decays) were determined. The corresponding E 1 channel was compared to calculations within the relativistic equation of motion (REOM) framework. Whereas the calculations of highest possible complexity reproduce the fragmentation and overall behavior of the E 1 average elastic cross section well, the predicted absolute cross sections are approximately twice as high as the experimental upper limits even though the latter also include an estimate of the inelastic-decay channel
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
We have measured the beam-normal single-spin asymmetry in elastic scattering
of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 =
0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely
using the elastic nucleon intermediate state, and generally agree with
calculations with significant inelastic hadronic intermediate state
contributions. A_n provides a direct probe of the imaginary component of the
2-gamma exchange amplitude, the complete description of which is important in
the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened
to meet PRL length limit, clarified some text after referee's comment
Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton
scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These
asymmetries, arising from interference of the electromagnetic and neutral weak
interactions, are sensitive to strange quark contributions to the currents of
the proton. The measurements were made at JLab using a toroidal spectrometer to
detect the recoiling protons from a liquid hydrogen target. The results
indicate non-zero, Q^2 dependent, strange quark contributions and provide new
information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure
- âŠ