694 research outputs found

    Renewed investigations at Taung; 90 years after Australopithecus africanus

    Get PDF
    2015 marked the 90th anniversary of the description of the first fossil ofAustralopithecus africanus, commonly known as the Taung Child, which was unearthed during blasting at the Buxton-Norlim Limeworks (referred to as the BNL) 15 km SE of the town of Taung, South Africa. Subsequently, this site has been recognized as a UNESCO World Heritage site on the basis of its importance to southern African palaeoanthropology. Some other sites such as Equus Cave and Black Earth Cave have also been investigated; but the latter not since the 1940s. These sites indicate that the complex of palaeontological and archaeological localities at the BNL preserve a time sequence spanning the Pliocene to the Holocene. The relationship of these various sites and how they fit into the sequence of formation of tufa, landscapes and caves at the limeworks have also not been investigated or discussed in detail since Peabody’s efforts in the 1940s. In this contribution we mark the 90th anniversary of the discovery and description of the Taung Child by providing a critical review of previous work at Taung based on our recent preliminary work at the site. This includes a reassessment of the Taung Child Type Site, as well as renewed excavations at Equus Cave and the lesser-known locality and little-investigated Black Earth Cave. Preliminary results suggest that much of our previous understandings of the BNL’s formational history and site formation processes need to be reassessed. Only through detailed analysis on the BNL as a whole can we understand this complex depositional environment

    Extraction of Beam-Spin Asymmetries from the Hard Exclusive π⁺ Channel Off Protons in a Wide Range of Kinematics

    Get PDF
    We have measured beam-spin asymmetries to extract the sinϕ moment ALUsinϕ from the hard exclusive e→p → e\u27nπ+ reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The ALUsinϕ moment has been measured up to 6.6  GeV2 in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time. The experimental results in very forward kinematics demonstrate the sensitivity to chiral-odd and chiral-even GPDs. In very backward kinematics where the TDA framework is applicable, we found ALUsinϕ to be negative, while a sign change was observed near 90° in the center of mass. The unique results presented in this Letter will provide critical constraints to establish reaction mechanisms that can help to further develop the GPD and TDA frameworks

    Diffusion and Localization of Cold Atoms in 3D Optical Speckle

    Full text link
    In this work we re-formulate and solve the self-consistent theory for localization to a Bose-Einstein condensate expanding in a 3D optical speckle. The long-range nature of the fluctuations in the potential energy, treated in the self-consistent Born approximation, make the scattering strongly velocity dependent, and its consequences for mobility edge and fraction of localized atoms have been investigated numerically.Comment: 8 pages, 11 figure

    Direct Observation of Proton-Neutron Short-Range Correlation Dominance in Heavy Nuclei

    Get PDF
    We measured the triple coincidence A(e,e′n p) and A(e,e′ p p) reactions on carbon, aluminum, iron, and lead targets at Q2 \u3e1.5  (GeV/c)2, xB \u3e 1.1 and missing momentum \u3e400  MeV/c. This was the first direct measurement of both proton-proton (pp) and neutron-proton (np) short-range correlated (SRC) pair knockout from heavy asymmetric nuclei. For all measured nuclei, the average proton-proton (pp) to neutron-proton (np) reduced cross-section ratio is about 6%, in agreement with previous indirect measurements. Correcting for single-charge exchange effects decreased the SRC pairs ratio to ∼3%, which is lower than previous results. Comparisons to theoretical generalized contact formalism (GCF) cross-section calculations show good agreement using both phenomenological and chiral nucleon-nucleon potentials, favoring a lower pp to np pair ratio. The ability of the GCF calculation to describe the experimental data using either phenomenological or chiral potentials suggests possible reduction of scale and scheme dependence in cross-section ratios. Our results also support the high-resolution description of high-momentum states being predominantly due to nucleons in SRC pairs

    Demonstration of a Novel Technique to Measure Two-Photon Exchange Effects in Elastic e±p Scattering

    Get PDF
    Background: The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. Purpose: The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has the potential to make precise measurements over a broad range in Q2 and scattering angles. Methods: We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. Results: The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for ⟨Q2⟩=0.206 GeV2 and 0.830⩽ε⩽0.943. Conclusions: We have demonstrated that the tertiary e± beam generated using this technique provides the opportunity for dramatically improved comparisons of e±p scattering, covering a significant range in both Q2 and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e+ and e− beams

    Resonance fluorescence of a trapped three-level atom

    Get PDF
    We investigate theoretically the spectrum of resonance fluorescence of a harmonically trapped atom, whose internal transitions are Λ\Lambda--shaped and driven at two-photon resonance by a pair of lasers, which cool the center--of--mass motion. For this configuration, photons are scattered only due to the mechanical effects of the quantum interaction between light and atom. We study the spectrum of emission in the final stage of laser--cooling, when the atomic center-of-mass dynamics is quantum mechanical and the size of the wave packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use the spectral decomposition of the Liouville operator of the master equation for the atomic density matrix and apply second order perturbation theory. We find that the spectrum of resonance fluorescence is composed by two narrow sidebands -- the Stokes and anti-Stokes components of the scattered light -- while all other signals are in general orders of magnitude smaller. For very low temperatures, however, the Mollow--type inelastic component of the spectrum becomes visible. This exhibits novel features which allow further insight into the quantum dynamics of the system. We provide a physical model that interprets our results and discuss how one can recover temperature and cooling rate of the atom from the spectrum. The behaviour of the considered system is compared with the resonance fluorescence of a trapped atom whose internal transition consists of two-levels.Comment: 11 pages, 4 Figure

    Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion

    Full text link
    We describe the results of a parametric down-conversion experiment in which the detection of one photon of a pair causes the other photon to be switched into a storage loop. The stored photon can then be switched out of the loop at a later time chosen by the user, providing a single photon for potential use in a variety of quantum information processing applications. Although the stored single photon is only available at periodic time intervals, those times can be chosen to match the cycle time of a quantum computer by using pulsed down-conversion. The potential use of the storage loop as a photonic quantum memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon

    Full text link
    There are two mechanisms for the generation of an asymmetry between the strange and anti-strange quark distributions in the nucleon: nonperturbative contributions originating from nucleons fluctuating into virtual baryon-meson pairs such as ΛK\Lambda K and ΣK\Sigma K, and perturbative contributions arising from gluons splitting into strange and anti-strange quark pairs. While the nonperturbative contributions are dominant in the large-xx region, the perturbative contributions are more significant in the small-xx region. We calculate this asymmetry taking into account both nonperturbative and perturbative contributions, thus giving a more accurate evaluation of this asymmetry over the whole domain of xx. We find that the perturbative contributions are generally a few times larger in magnitude than the nonperturbative contributions, which suggests that the best region to detect this asymmetry experimentally is in the region 0.02<x<0.030.02 < x < 0.03. We find that the asymmetry may have more than one node, which is an effect that should be taken into account, e.g. for parameterizations of the strange and anti-strange quark distributions used in global analysis of parton distributions.Comment: 14 pages, 4 figures, figures comparing theoretical calculations with NNPDF global analysis added, accepted for publication in EPJ
    corecore