137 research outputs found

    B(E1) Strengths from Coulomb Excitation of 11Be

    Get PDF
    The BB(E1;1/2+1/21/2^+\to1/2^-) strength for 11^{11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for 11^{11}Be+208^{208}Pb at 38.6 MeV/nucleon is reported. The BB(E1) strength of 0.105(12) e2^2fm2^2 derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, i n contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e2^2fm2^2. This value is in good agreement with the value deduced independently from the lifetime of the 1/21/2^- state in 11^{11}Be, and has a comparable p recision.Comment: 5 pages, 2 figures, accepted for publication in Phys. Lett.

    Direct measurments of (p,γ) cross sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator

    Get PDF
    There are a number of astrophysical environments in which the path of nucleosynthesis proceeds through proton-rich nuclei. Radioactive nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of (p,γ) cross sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. Data from 17F(p,γ)18Ne and 7Be(p,γ)8B measurements are presented

    γ -ray spectroscopy of astrophysically important states in Ca 39

    Get PDF
    Background: Nova explosions synthesize elements up to A≃40, and discrepancies exist between calculated and observed abundances of Ar and Ca created in the explosion. The K38(p,γ)Ca39 reaction rate has been shown to be influential on these isotopic abundances at the endpoint of nova nucleosynthesis. The energies of the three most important resonances, corresponding to Jπ=5/2+ excited states in the Ca39 nucleus above the proton separation threshold, are uncertain and one has been measured with conflicting values [Er=679(2) versus Er=701(2) keV] in previous experiments. Purpose: Reducing the uncertainties on the resonance energies would allow for a better understanding of the reaction rate. To improve these uncertainties, we searched for γ rays from the depopulation of the corresponding excited states in Ca39. Methods: We report a new measurement of these resonance energies via the observation of previously unobserved γ-ray transitions. These transitions were observed by studying the Ca40(3He,αγ)Ca39 reaction with Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS). The updated resonance energies were then used to calculate the K38(p,γ)Ca39 reaction rate and assess its uncertainties. Results: In total, 23 new transitions were found, including three γ-ray transitions corresponding to the three Jπ=5/2+ states of astrophysical interest at energies of 6156.2(16), 6268.8(22), and 6470.8(19) keV. These correspond to resonance energies in the K38(p,γ)Ca39 reaction of 386(2), 498(2), and 701(2) keV. Conclusions: Updated K38(p,γ)Ca39 reaction rate calculations show a reduced upper limit at nova temperatures. However, the lower-than-previously-measured energy of the 498-keV resonance and uncertainty in its resonance strength increases the upper limit of the rate close to previous estimates at 0.4 GK

    New γ -ray transitions observed in Ne 19 with implications for the O 15 (α,γ) Ne 19 reaction rate

    Get PDF
    The O15(α,γ)Ne19 reaction is responsible for breakout from the hot CNO cycle in type I x-ray bursts. Understanding the properties of resonances between Ex=4 and 5 MeV in Ne19 is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2- and 7/2-, respectively. γ-ray transitions from these states were studied using triton-γ-γ coincidences from the F19(He3,tγ)Ne19 reaction measured with the GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the Jπ values are actually 7/2- and 9/2-, respectively. These assignments are consistent with the values in the F19 mirror nucleus and in contrast to previously accepted assignments

    Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams

    Get PDF
    A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p,γ) and (α,γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolving power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. The present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available

    Single-neutron orbits near Ni-78: Spectroscopy of the N=49 isotope Zn-79

    Get PDF
    5 pags., 6 figs.Single-neutron states in the , isotope 79Zn have been populated using the 78Zn(d, p)79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the shell gap. From the analysis of γ-ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a configuration was assigned to a state at 983 keV. Comparison with large-scale-shell-model calculations supports a robust neutron shell-closure for 78Ni. These data constitute an important step towards the understanding of the magicity of 78Ni and of the structure of nuclei in the region.This work was supported by the European Commission through the Marie Curie Actions Contracts Nos. PIEFGA-2011-30096 (R.O.) and PIEFGA-2008-219175 (J.P.), by the Spanish Ministerio de Ciencia e Innovación under contracts FPA2009-13377-C02 and FPA2011-29854-C04, by the Spanish MEC Consolider – Ingenio 2010, Project No. CDS2007-00042 (CPAN), by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF KU Leuven), by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12), by the European Union Seventh Framework Programme through ENSAR, contract no. RII3-CT-2010-262010, and by the German BMBF under contracts 05P09PKCI5, 05P12PKFNE, 05P12RDCIA and 06DA9036I. R.O., R.C., J.F.W.L., V.L. and J.F.S. also acknowledge support from STFC, Grant Nos. PP/F000944/1, ST/F007590/1, and ST/J000183/2

    Astrophysically important 19Ne states studied with the 2H(18F, α+15 O)n reaction

    Get PDF
    The nuclear structure of 19Ne near the proton threshold is of interest for understanding the rates of proton-induced reactions on 18F in novae. Analogues for several states in the mirror nucleus 19F have not yet been identified in 19Ne indicating the level structure of 19Ne in this region is incomplete. The 18F(d,n)19Ne and 18F(d, p)19F reactions have been measured simultaneously at Ec.m. = 14.9 MeV. The experiments were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL) by bombarding a 720-μg/cm2 CD2 target with a radioactive 18F beam. The 19Ne states of interest near the proton threshold decay by breakup into a and 15O particles. These decay products were detected in coincidence with position-sensitive E-ΔE silicon telescopes. The α and 15N particles from the break up of the mirror nucleus 19F were also measured with these detectors. Particle identification, coincidence, and Q-value requirements enable us to distinguish the reaction of interest from other reactions. The reconstruction of relative energy of the detected particles reveals the excited states of 19Ne and 19F which are populated. The neutron (proton) angular distributions for states in 19Ne (19F) were extracted using momentum conservation. The observed states in 19Ne and 19F will be presented

    S-wave scattering lengths for the Be 7 +p system from an R-matrix analysis

    Get PDF
    The astrophysical S factor for the radiative proton capture reaction on Be7 (S17) at low energies is affected by the s-wave scattering lengths. We report the measurement of elastic and inelastic scattering cross sections for the Be7+p system in the center-of-mass energy range 0.474-2.740 MeV and center-of-mass angular range 70-150. A radioactive Be7 beam produced at Oak Ridge National Laboratory's (ORNL) Holifield Radioactive Ion Beam Facility was accelerated and bombarded a thin polypropylene (CH2)n target. Scattered ions were detected in the segmented Silicon Detector Array. Using an R-matrix analysis of ORNL and Louvain-la-Neuve cross-section data, the s-wave scattering lengths for channel spins 1 and 2 were determined to be 17.34-1.33+1.11 and -3.18-0.50+0.55 fm, respectively. The uncertainty in the s-wave scattering lengths reported in this work is smaller by a factor of 5-8 compared to the previous measurement, which may reduce the overall uncertainty in S17 at zero energy. The level structure of B8 is discussed based upon the results from this work. Evidence for the existence of 0+ and 2+ levels in B8 at 1.9 and 2.21 MeV, respectively, is observed

    Angle-integrated measurements of the 26Al (d, n)27Si reaction cross section: a probe of spectroscopic factors and astrophysical resonance strengths

    Get PDF
    Measurements of angle-integrated cross sections to discrete states in 27Si have been performed studying the 26Al (d, n) reaction in inverse kinematics by tagging states by their characteristic γ \gamma -decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the 26Al (p,γ \gamma) 27Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment

    New γ -ray transitions observed in Ne 19 with implications for the O 15 (α,γ) Ne 19 reaction rate

    Get PDF
    The O15(α,γ)Ne19 reaction is responsible for breakout from the hot CNO cycle in type I x-ray bursts. Understanding the properties of resonances between Ex=4 and 5 MeV in Ne19 is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2- and 7/2-, respectively. γ-ray transitions from these states were studied using triton-γ-γ coincidences from the F19(He3,tγ)Ne19 reaction measured with the GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the Jπ values are actually 7/2- and 9/2-, respectively. These assignments are consistent with the values in the F19 mirror nucleus and in contrast to previously accepted assignments
    corecore