70 research outputs found

    Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments

    Full text link
    [EN] In many Mediterranean areas, citrus orchards exhibit high soil loss rates because of the expansion of drip irrigation that allows cultivation on sloping terrain and the widespread use of glyphosate. To mitigate these non-sustainable soil losses, straw mulch could be applied as an efficient solution but this has been poorly studied. Therefore, the main goal of this paper was to assess the use of straw mulch as a tool to reduce soil losses in clementine plantations, which can be considered representative of a typical Mediterranean citrus orchard. A total of 40 rainfall simulation experiments were carried out on 20 pairs of neighbouring bare and mulched plots. Each experiment involved applying 38.8 mm of rain at a constant rate over 1 h to a circular plot of 0.28 m(2) circular plots. The results showed that a cover of 50% of straw (60 g m(-2)) was able to delay the time to ponding from 32 to 52 s and the time to runoff initiation from 57 to 129 s. Also, the mulching reduced the runoff coefficient from 65.6 to 50.5%. The effect on sediment transport was even more pronounced, as the straw mulch reduced the sediment concentration from 16.7 g l(-1) to 3.6 g l(-1) and the soil erosion rates from 439 g to 73 g. Our results indicated that mulching can be used as a useful management practice to control soil erosion rates due to the immediate effect on high soil detachment rate and runoff initiation reduction in conventional clementine orchards on sloping land, by slowing down runoff initiation and by reducing runoff generation and, especially, sediment losses. We indirectly concluded that straw mulch is also a sustainable solution in glyphosate-treated citrus plantations.This paper is part of the results of research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE-FP7 (ENV.2013.6.2-4).Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Giménez Morera, A.; Pulido, M.; Di Prima, S.; Cerda, A. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. CATENA. 174:95-103. https://doi.org/10.1016/j.catena.2018.11.007S9510317

    Soil-derived Nature's Contributions to People and their contribution to the un Sustainable Development Goals

    Get PDF
    This special issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). Here, we combine this assessment and previously published relationships between NCP and delivery on the UN Sustainable Development Goals (SDGs) to infer contributions of soils to the SDGs. We show that in addition to contributing positively to the delivery of all NCP, soils also have a role in underpinning all SDGs. While highlighting the great potential of soils to contribute to sustainable development, it is recognized that poorly managed, degraded or polluted soils may contribute negatively to both NCP and SDGs. The positive contribution, however, cannot be taken for granted, and soils must be managed carefully to keep them healthy and capable of playing this vital role. A priority for soil management must include: (i) for healthy soils in natural ecosystems, protect them from conversion and degradation; (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health and sustainability and to prevent degradation; and (iii) for degraded soils, restore to full soil health. We have enough knowledge now to move forward with the implementation of best management practices to maintain and improve soil health. This analysis shows that this is not just desirable, it is essential if we are to meet the SDG targets by 2030 and achieve sustainable development more broadly in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'. © 2021 The Author(s)

    Impact of natural reforestation on floodpain sedimentation in the Dragonja basin, SW Slovenia

    No full text
    Changes in floodplain sediment dynamics have profound effects on riverine habitats and riparian biodiversity. Depopulation due to socio-economic changes in the Dragonja catchment (91 km2) in southwestern Slovenia resulted in the abandonment of agricultural fields, followed by natural reforestation since 1945. This profoundly changed the water and sediment supply to the streams, as well as floodplain sediment deposition. This paper presents a reconstruction of the development of the Dragonja floodplain due to these land use changes during the last 60 years. The reconstruction is based on dating of floodplain sediments using 137Cs profiles, measurement of actual sedimentation rates using artificial grass sedimentation mats, and linking this information to the present-day hydrological behaviour of the river. The sedimentation mats showed that floodplain sedimentation was restricted to peak flows of considerable magnitude. Due to the reforestation, the return period of such high flows increased from 0·31 year in the period 1960-1985 to 0·81 year between 1986 and 2003, with commensurate changes in sedimentation rates. At the 1·5 m river terrace (formed about 60 years ago), 137Cs-based sedimentation rates (1960-1986) were roughly twice the rates inferred from the artificial grass mats (2001-2003). This finding matches the increase in the return period for larger peak events during the 1986-2003 period, which caused fewer major inundations at this level. Conversely, sedimentation rates determined for the lowest terrace at 0·5 m were similar for both techniques (and periods) because the return periods of the peak events responsible for sediment deposition at this lower level did not change much over the period 1986-2003
    corecore