15 research outputs found
Hydrodynamic Analysis of Human Kinetochore Complexes During Mitosis
Hydrodynamic analysis is a powerful tool to dissect the molecular architecture of macromolecular protein assemblies. These techniques have been successfully used in yeast systems but are also well suited to the analysis of protein complexes from human cells. Furthermore, the combination of hydrodynamic analysis with siRNA mediated protein depletion provides an excellent system to probe the composition of protein complexes isolated from human cells. In this chapter we describe the use of these approaches in the analysis of macromolecular protein complexes during mitosis in human cells, using the kinetochore as an example
Kar9p-independent Microtubule Capture at Bud6p Cortical Sites Primes Spindle Polarity before Bud Emergence in Saccharomyces cerevisiae
Spindle orientation is critical for accurate chromosomal segregation in eukaryotic cells. In the yeast Saccharomyces cerevisiae, orientation of the mitotic spindle is achieved by a program of microtubule–cortex interactions coupled to spindle morphogenesis. We previously implicated Bud6p in directing microtubule capture throughout this program. Herein, we have analyzed cells coexpressing GFP:Bud6 and GFP:Tub1 fusions, providing a kinetic view of Bud6p–microtubule interactions in live cells. Surprisingly, even during the G1 phase, microtubule capture at the recent division site and the incipient bud is dictated by Bud6p. These contacts are eliminated in bud6Δ cells but are proficient in kar9Δ cells. Thus, Bud6p cues microtubule capture, as soon as a new cell polarity axis is established independent of Kar9p. Bud6p increases the duration of interactions and promotes distinct modes of cortical association within the bud and neck regions. In particular, microtubule shrinkage and growth at the cortex rarely occur away from Bud6p sites. These are the interactions selectively impaired at the bud cortex in bud6Δ cells. Finally, interactions away from Bud6p sites within the bud differ from those occurring at the mother cell cortex, pointing to the existence of an independent factor controlling cortical contacts in mother cells after bud emergence
Evidence That an Interaction between EB1 and p150(Glued) Is Required for the Formation and Maintenance of a Radial Microtubule Array Anchored at the Centrosome
EB1 is a microtubule tip–associated protein that interacts with the APC tumor suppressor protein and components of the dynein/dynactin complex. We have found that the C-terminal 50 and 84 amino acids (aa) of EB1 were sufficient to mediate the interactions with APC and dynactin, respectively. EB1 formed mutually exclusive complexes with APC and dynactin, and a direct interaction between EB1 and p150(Glued) was identified. EB1-GFP deletion mutants demonstrated a role for the N-terminus in mediating the EB1-microtubule interaction, whereas C-terminal regions contributed to both its microtubule tip localization and a centrosomal localization. Cells expressing the last 84 aa of EB1 fused to GFP (EB1-C84-GFP) displayed profound defects in microtubule organization and centrosomal anchoring. EB1-C84-GFP expression severely inhibited microtubule regrowth, focusing, and anchoring in transfected cells during recovery from nocodazole treatment. The recruitment of γ-tubulin and p150(Glued) to centrosomes was also inhibited. None of these effects were seen in cells expressing the last 50 aa of EB1 fused to GFP. Furthermore, EB1-C84-GFP expression did not induce Golgi apparatus fragmentation. We propose that a functional interaction between EB1 and p150(Glued) is required for microtubule minus end anchoring at centrosomes during the assembly and maintenance of a radial microtubule array
Roles of NUDE and NUDF Proteins of Aspergillus nidulans: Insights from Intracellular Localization and Overexpression Effects
The NUDF protein of the filamentous fungus Aspergillus nidulans functions in the cytoplasmic dynein pathway. It binds several proteins, including the NUDE protein. Green fluorescent protein-tagged NUDF and NUDA (dynein heavy chain) localize to linearly moving dashes (“comets”) that coincide with microtubule ends. Herein, deletion of the nudE gene did not eliminate the comets of NUDF and NUDA, but affected the behavior of NUDA. Comets were also observed with the green fluorescent protein-tagged NUDE and its nonfunctional C-terminal domain. In addition, overexpressed NUDA and NUDE accumulated in specks that were either immobile or bounced randomly. Neither comets nor specks were observed with the functional N-terminal domain of NUDE, indicating that these structures are not essential for NUDE function. Furthermore, NUDF overproduction totally suppressed deletion of the nudE gene. This implies that the function of NUDE is secondary to that of NUDF. Unexpectedly, NUDF overproduction inhibited one conditional nudA mutant and all tested apsA mutants. An allele-specific interaction between the nudF and nudA genes is consistent with a direct interaction between NUDF and dynein heavy chain. Because APSA and its yeast homolog Num1p are cortical proteins, an interaction between the nudF and apsA genes suggests a role for NUDF at the cell cortex