43 research outputs found

    Growing Correlation Length on Cooling Below the Onset of Caging in a Simulated Glass-Forming Liquid

    Get PDF
    We present a calculation of a fourth-order, time-dependent density correlation function that measures higher-order spatiotemporall correlations of the density of a liquid. From molecular dynamics simulations of a glass-forming Lennard-Jones liquid, we find that the characteristic length scale of this function has a maximum as a function of time which increases steadily beyond the characteristic length of the static pair correlation function g(r)g(r) in the temperature range approaching the mode coupling temperature from above

    Sticky Spheres, Entropy barriers and Non-equilibrium phase transitions

    Full text link
    A sticky spheres model to describe slow dynamics of a non-equilibrium system is proposed. The dynamical slowing down is due to the presence of entropy barriers. We present an exact mean field analysis of the model and demonstrate that there is a non-equilibrium phase transition from an exponential cluster size distribution to a powerlaw.Comment: 10pages text and 2 figure

    Time and length scales in supercooled liquids

    Full text link
    We numerically obtain the first quantitative demonstration that development of spatial correlations of mobility as temperature is lowered is responsible for the ``decoupling'' of transport properties of supercooled liquids. This result further demonstrates the necessity of a spatial description of the glass formation and therefore seriously challenges a number of popular alternative theoretical descriptions.Comment: 4 pages, 4 figs; improved version: new refs and discussion

    Damage Spreading During Domain Growth

    Full text link
    We study damage spreading in models of two-dimensional systems undergoing first order phase transitions. We consider several models from the same non-conserved order parameter universality class, and find unexpected differences between them. An exact solution of the Ohta-Jasnow-Kawasaki model yields the damage growth law DtϕD \sim t^{\phi}, where ϕ=td/4\phi = t^{d/4} in dd dimensions. In contrast, time-dependent Ginzburg-Landau simulations and Ising simulations in d=2d= 2 using heat-bath dynamics show power-law growth, but with an exponent of approximately 0.360.36, independent of the system sizes studied. In marked contrast, Metropolis dynamics shows damage growing via ϕ1\phi \sim 1, although the damage difference grows as t0.4t^{0.4}. PACS: 64.60.-i, 05.50.+qComment: 4 pags of revtex3 + 3 postscript files appended as a compressed and uuencoded file. UIB940320

    Ordering of the lamellar phase under a shear flow

    Full text link
    The dynamics of a system quenched into a state with lamellar order and subject to an uniform shear flow is solved in the large-N limit. The description is based on the Brazovskii free-energy and the evolution follows a convection-diffusion equation. Lamellae order preferentially with the normal along the vorticity direction. Typical lengths grow as γt5/4\gamma t^{5/4} (with logarithmic corrections) in the flow direction and logarithmically in the shear direction. Dynamical scaling holds in the two-dimensional case while it is violated in D=3

    Kob-Andersen model: a non-standard mechanism for the glassy transition

    Full text link
    We present new results reflecting the analogies between the Kob-Andersen model and other glassy systems. Studying the stability of the blocked configurations above and below the transition we also give arguments that supports their relevance for the glassy behaviour of the model. However we find, surprisingly, that the organization of the phase space of the system is different from the well known organization of other mean-field spin glasses and structural glasses.Comment: New reference added and one update

    Effect of Ordering on Spinodal Decomposition of Liquid-Crystal/Polymer Mixtures

    Full text link
    Partially phase-separated liquid-crystal/polymer dispersions display highly fibrillar domain morphologies that are dramatically different from the typical structures found in isotropic mixtures. To explain this, we numerically explore the coupling between phase ordering and phase separation kinetics in model two-dimensional fluid mixtures phase separating into a nematic phase, rich in liquid crystal, coexisting with an isotropic phase, rich in polymer. We find that phase ordering can lead to fibrillar networks of the minority polymer-rich phase

    A cluster theory for a Janus fluid

    Full text link
    Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid have revealed that in the vapour phase there is the formation of preferred clusters made up of a well-defined number of particles: the micelles and the vesicles. A cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce the micellisation phenomenon.Comment: 27 pages, 8 figures, 6 table

    Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models

    Full text link
    Kinetically constrained models (KCMs) have been used to study and understand the origin of glassy dynamics. Despite having trivial thermodynamic properties, their dynamics slows down dramatically at low temperatures while displaying dynamical heterogeneity as seen in glass forming supercooled liquids. This dynamics has its origin in an ergodic-nonergodic first-order phase transition between phases of distinct dynamical "activity". This is a "space-time" transition as it corresponds to a singular change in ensembles of trajectories of the dynamics rather than ensembles of configurations. Here we extend these ideas to driven glassy systems by considering KCMs driven into non-equilibrium steady states through non-conservative forces. By classifying trajectories through their entropy production we prove that driven KCMs also display an analogous first-order space-time transition between dynamical phases of finite and vanishing entropy production. We also discuss how trajectories with rare values of entropy production can be realized as typical trajectories of a mapped system with modified forces
    corecore