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An equilibrated model glass-forming liquid is studied by mapping successive configurations
produced by molecular dynamics simulation onto a time series of inherent structures~local minima
in the potential energy!. Using this ‘‘inherent dynamics’’ approach we find direct numerical
evidence for the long held view that below a crossover temperature,Tx , the liquid’s dynamics can
be separated into~i! vibrations around inherent structures and~ii ! transitions between inherent
structures@M. Goldstein, J. Chem. Phys.51, 3728~1969!#, i.e., the dynamics become ‘‘dominated’’
by the potential energy landscape. In agreement with previous proposals, we find thatTx is within
the vicinity of the mode-coupling critical temperatureTc . We further find that nearTx , transitions
between inherent structures occur via cooperative, stringlike rearrangements of groups of particles
moving distances substantially smaller than the average interparticle distance. ©2000 American
Institute of Physics.@S0021-9606~00!50122-6#
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I. INTRODUCTION

Dynamical behavior of many physical and biologic
systems1–4 can be considered in terms of the transient loc
ization of the system in basins of potential energy, and tr
sitions between basins. In particular, this approach has
ceived much attention in studies of slow dynamics and
glass transition in supercooled liquids. Here, the strong t
perature dependence of transport properties such as the
fusion coefficient and viscosity, and the possible existenc
a thermodynamic transition underlying the laboratory gl
transition, have been sought to be understood in terms o
properties of the liquid’s potential energy~or free energy!
surface, or ‘‘landscape’’ as it is commonly called.1,2,5–18

For a system composed ofN atoms, the potential energ
surface is simply the system’s potential energy plotted a
function of the 3N particle coordinates in a 3N11 dimen-
sional space.5 The potential energy surface contains a lar
number of local minima, termed ‘‘inherent structures’’ b
Stillinger and Weber.6 Each inherent structure is surround
by a ‘‘basin,’’ which is defined such that a local minimiza
tion of the potential energy maps any point in the basin to
inherent structure contained within it. The time evolution
a liquid may be viewed as the motion of a point on t
9830021-9606/2000/112(22)/9834/7/$17.00
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potential energy surface, and thus as a succession of tra
tions from one basin to another. These transitions are
pected to occur differently as the temperatureT is varied. In
particular, Goldstein argued5 that below a crossover tempera
ture,Tx , where the shear relaxation time is;1029 s, relax-
ation is governed by thermally activated crossings of pot
tial energy barriers. The presence of significant ene
barriers belowTx suggests a clear separation of short-tim
~vibrational! relaxation within potential energy basins fro
long-time relaxation due to transitions between basins.

A complementary approach to the dynamics of sup
cooled liquids is provided by the mode coupling theo
~MCT!.19 The simplest~so-called ‘‘ideal’’! version of this
theory predicts a power-law divergence of relaxation tim
and the inverse diffusion coefficient, at a critical temperat
Tc . Although a power law provides a reasonable descript
of the temperature dependence of these quantities abovTc

in both real and simulated systems, power law behav
breaks down forT'Tc , i.e., the predicted singularity atTc

is not observed. This deviation is attributed to the prese
of ‘‘hopping’’ motion as a mechanism of relaxation, which
not included in ideal MCT.19 Consequently,Tc is usually
estimated by fitting a power law to a relaxation time, taki
4 © 2000 American Institute of Physics
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9835J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 A model glass-forming liquid
into account that this fit is expected to break down close
~and below! Tc .

It was noted by Angell7 that experimentally it is often
found that the shear relaxation time is on the order of 1029 s
at the estimatedTc , leading to the argument thatTx'Tc

~See also Ref. 20!. The presence of a low temperature regim
where barrier crossings dominate the dynamics, and the
respondence of the crossover to that regime with the m
coupling critical temperatureTc , has also been discussed
the context of mean field theories of certain spin gla
models.21–23

The existence of the crossover temperatureTx and the
corresponding separation of the dynamics can be dire
tested with computer simulations, using the concept of inh
ent structures. In this paper, we map the dynamical evolu
of an equilibrated model liquid to a time series of inhere
structures for a range of temperatures. In this way, we
the extent to which short-time ‘‘intrabasin’’ relaxation
separable from long-time ‘‘interbasin’’ relaxation. Our r
sults demonstrate that this separation becomes valid as
system is cooled, and we estimate the crossover temper
Tx to be close to the estimated value ofTc .

II. INHERENT DYNAMICS

In this section we describe the details of our approa
which is sketched in Fig. 1. After equilibration at a give
thermodynamic state point, a discrete time series of confi
rations,R(t), is produced by standard molecular dynam
~MD! simulation. Each of the configurationsR(t) is then
mapped to its corresponding inherent structure,RI(t), by
locally minimizing the potential energy in configuratio
space. We refer to this procedure as a ‘‘quench.’’ Af
quenching the configurations inR(t), we have two ‘‘paral-
lel’’ time series of configurations,R(t) andRI(t). The time
seriesR(t) defines the ‘‘true dynamics,’’ which is simply th
usual~Newtonian! MD dynamics. In an analogous way, th
time seriesRI(t) defines the ‘‘inherent dynamics.’’ If a func
tion quantifying some aspect of the true dynamics is deno
by f (R(t)), then the corresponding function,f (RI(t)), of
the inherent dynamics is calculated in exactly the same w
except using the time series of inherent structures. For
ample, the self-intermediate scattering function,Fs(q,t), and
the inherent self intermediate scattering function,Fs

I (q,t),
are defined by

FIG. 1. Schematic describing the principle of the ‘‘inherent dynamic
approach. Successive configurations of the equilibrated liquidR(t) are
quenched to produce their corresponding inherent structuresRI(t). Succes-
sive inherent structures form a time series which we use to calculate
inherent self intermediate scattering functionFs

I (q,t) @Eq. ~2.2!#. More gen-
erally, the inherent counterpart of any equilibrium quantity may be ca
lated in this fashion.
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Fs~q,t ![^cosq•~r j~ t !2r j~0!!&, ~2.1!

and

Fs
I ~q,t ![^cosq•~r j

I~ t !2r j
I~0!!&, ~2.2!

wherer j
I (t) is the position of thej th particle in the inherent

structureRI(t) and ^•••& denotes an average overj and the
time origin.

In this paper, we quantitatively compareFs(q,t) and
Fs

I (q,t) to test whether the dynamics of a binary Lenna
Jones mixture can be separated into vibrations around,
transitions between, inherent structures. If so, thenFs

I (q,t)
describes the relaxation of the liquid as described
Fs(q,t), but with the effect of the vibrations removed. W
show that this scenario becomes true below a crossover
perature,Tx , which is close to the lowest temperature sim
lated in the present work.

III. RESULTS

In the following we present results from molecular d
namics simulations of a binary Lennard-Jones mixture
three dimensions, equilibrated at eight different tempe
tures. The model used for the present simulations is
scribed in Ref. 24. The system contains 251 particles of t
A and 249 particles of type B interacting via a bina
Lennard-Jones potential with parameterssBB /sAA55/6,
sAB5(sAA1sBB)/2, andeAA5eAB5eBB . The masses are
given by mB /mA51/2. The length of the sample isL
57.28sAA and the potential was cut and shifted at 2.5sab .
All quantities are reported in reduced units;T in units of
eAA , lengths in units ofsAA and time in units of t
[(mBsAA

2 /48e)1/2 ~this was misprinted in Ref. 24!. Adopting
‘‘argon units’’ leads tosAA53.4 Å, e/kB5120 K, and t
53310213s. The simulations were performed in the NV
ensemble using the leapfrog algorithm with a time step
0.01t, at constant reduced density,r51.296. The quenching
was performed using the conjugate gradient method.25

We first briefly describe aspects of the true dynam
that demonstrate a qualitative change occuring in the t
perature range investigated.

In Fig. 2 we show the quantity 4pr 2GsA(r ,t1), which is
the distribution of displacements26 of particles of type A dur-
ing the time intervalt1 . We definet1 as the time where the
mean square displacement is unity,^r 2(t1)&A51. At all tem-
peratures the dynamics become diffusive (^r 2(t)&A}t) for t
*t1 ~see inset!, i.e., t1 marks the onset of diffusivity. At the
highest temperatures, 4pr 2GsA(r ,t1) agrees well with
the Gaussian approximation@thick curve, GsA(r ,t1)
} exp(23r2/2)#. As T is lowered, the distribution of particle
displacements deviates from the Gaussian approximat
and a shoulder develops at the average interparticle dist
~r'1.0 in the adopted units!, which at T50.59 becomes a
well-defined second peak. The second peak, observed al
other model liquids at low temperatures, indicates27,28 single
particle ‘‘hopping’’ @see Fig. 3~a!#; particles stay relatively
localized for a period of time~first peak!, and then move
approximately one interparticle distance, where they ag
become localized~second peak!. Thus we see from Fig. 2
that as we approach our lowest simulated temperaturT

’
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-
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9836 J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 Schrøder et al.
50.59, there is a qualitative change from dynamics well
scribed by a Gaussian distribution to dynamics dominated
hopping processes.

In Fig. 3~b! the inherent dynamics approach is applied
the true trajectory seen in Fig. 3~a!. The resulting ‘‘inherent
trajectory’’ consists of the positions of the particle in 16
successive quenched configurations. The quenching pr
dure is seen to remove the vibrational motion from the t
trajectory. The inherent trajectory will be discussed in mo
detail in Sec. IV.

We now compare the true self intermediate scatter
function,Fs(q,t), with its inherent counterpartFs

I (q,t). Fig-
ure 4~a! shows the self-intermediate scattering function
the A particles,FsA(q,t), at q57.5 corresponding to the
position of the primary peak in the static structure factor

FIG. 2. Distribution of particle displacements for the A~large! particles,
4pr 2GsA(r ,t1), wheret1 is defined bŷ r 2(t1)&A51 ~see inset!. At high T
the Gaussian approximation~thick curve! is reasonable, whereas at the low
est T a second peak is present, indicating single particle hopping.~Inset!
Mean square displacement of the A particles,^r 2(t)&A . Similar behavior is
found for the B~small! particles.

FIG. 3. ~a! Trajectory of a particle atT50.59. The elapsed time isDt
5160t ~the typical ‘‘vibration’’ time is '1t!. At this temperature the dy-
namics is dominated by ‘‘hopping;’’ particles stay relatively localized f
many time steps and then move approximately one interparticle dista
where they again become localized.~b! Applying the inherent dynamics
approach to the trajectory above. The 1600 configurations used to gen
the~true! trajectory in~a! were quenched, and the positions of the particle
the resulting inherent structures are here plotted and connected by st
lines.
Downloaded 11 Dec 2002 to 130.225.222.195. Redistribution subject to 
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the A–A correlation. For each temperatureFs(q,t) was cal-
culated from approximately 2000 configurations~depending
on temperature!. As T decreases,FsA(q,t) is found to dis-
play the typical two-step relaxation, where the short tim
decay is attributed to vibrational relaxation~or ‘‘dephasing,’’
see Ref. 11! of particles within cages formed by neighborin
particles.29–31 The long time, ora-relaxation is separated
from the short time regime by a plateau indicating transi
localization, or ‘‘caging’’ of particles, and is generally ob
served to follow a stretched exponential form.

The self-part of the inherent intermediate scatter
function for the A particles,FsA

I (q,t) at q57.5, is shown in
Fig. 4~b!. This was calculated by quenching each configu
tion used in Fig. 4~a!, and then applying the same data ana
sis program on the resulting time series of inherent str
tures. As expected, the plateau disappears in the inhe
dynamics, as previously shown also for the inherent me
square displacement.24 At all T we find that the long-time
behavior of bothFsA(q,t) andFsA

I (q,t) is well described by
stretched exponentials~dashed lines!. As a result, we can
quantitatively compare the long time relaxation ofFsA(q,t)
andFsA

I (q,t) by comparing the fitting parameters$ta ,b, f c%
of the stretched exponentialsf (t)5 f c exp(2(t/ta)b).

If the true dynamics can be separated into vibratio
around and transitions between inherent structures, how
we expect the fitting parameters for the inherent se
intermediate scattering function,$ta

I ,b I , f c
I % to be related to

the fitting parameters for the true self intermediate scatte
function, $ta ,b, f c%? To answer this question, we assum

e,

ate

ght

FIG. 4. ~a! FsA(q,t) plotted vst on the log-scale forq57.5 at the same
temperatures as in Fig 2. Data points are connected by straight lines. Da
lines are fits tof (t)5 f c exp(2(t/ta)b). ~b! FsA

I (q,t), otherwise as above. In
both ~a! and ~b!, the fitting was performed fort.10 for the two highest
temperatures and fort.30 otherwise. Similar behavior is found for the
particles.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9837J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 A model glass-forming liquid
that the initial relaxation inFs(q,t) is due to vibrations~as
widely accepted11,29–31!. If this is the case, then we expe
the quenching procedure to remove the initial relaxat
~since it removes the vibrations!, which means thatFs

I (q,t)
can be thought of asFs(q,t) with the initial relaxation re-
moved. If vibration can be separated from transitions
tween inherent structures we may write for t
x-displacement,Dx5Dxvib1Dxinh , where the two terms are
statistically uncorrelated. Thus,@using an exponential instea
of cosine in Eqs.~2.1! and ~2.2!# we find that the self-
intermediate scattering function is aproductof a term relat-
ing to vibrations and one relating to transitions between
herent structures. At long times the former becomes tim
independent, converging to the nonergodicity parame
This in turn means thatFs

I (q,t) should be identical to the
long time relaxation ofFs(q,t), but rescaled to start at unity
$ta

I ,b I , f c
I %5$ta ,b,1%.

The fitting parameters used for fitting stretched expon
tials to FsA(q,t) @Fig. 4~a!# and FsA

I (q,t) @Fig. 4~b!# are
shown in Fig. 5;~a! relaxation times,ta andta

I , ~b! stretch-
ing parameters,b andb I , and~c! nonergodicity parameters
f c and f c

I . We also show in Fig. 5~a! the fit of the asymptotic
mode coupling predictionta}(T2Tc)

2g, from which we
find Tc50.59260.006 andg51.4160.07. The fitting was
done without the lowest temperature, where hopping
clearly present in the system~see Fig. 2!, since this type of
particle motion is not included in the ideal mode coupli
theory. Excluding thetwo lowestT gives a fit which is con-
sistent with the one presented here; including all tempe
tures gives a considerably worse fit. Applying the same p
cedure to the inverse diffusion coefficient,D21(T), gives
Tc50.57460.005 andg51.4060.09 ~data not shown!.

Also shown in Fig. 5 as insets areta
I vs ta andb I vs b.

Within the error bars we find thatta andta
I are identical at

all temperatures. At the highest temperaturesb is poorly de-
fined since there is no well-defined plateau inFsA(q,t). Con-
sequently it is difficult to compareb and b I at high T, but
we find that they become identical~within the error bars! at
low T. Thus at low temperatures our results confirm t
expectation that the inherent dynamics is simply a coa
graining of the true dynamics, i.e., that$ta

I ,b I%5$ta ,b%.
On the other hand, the nonergodicity parametersf c and f c

I

@Fig. 5~c!# are strikingly different. Whilef c is roughly inde-
pendent ofT, f c

I increases towards unity asT approaches ou
lowest temperature. The fact that we observe a tempera
dependence off c

I approaching unity asT approaches ou
lowest temperatureT50.59, leads us to conclude that this
close to the crossover temperature,Tx . We note that Gold-
stein’s estimate of shear relaxation times atTx (1029 s) in
our LJ units corresponds to 33103, which is the same orde
of magnitude asta in the temperature range wheref c ap-
proaches unity.

Below Tx the inherent dynamics can be thought of as
true dynamics with the effect of the vibrations removed,
shown above. How should the inherent dynamics be in
pretedabove Tx? In Fig. 4~b! the short time relaxation of the
inherent self intermediate scattering function at high te
peratures is seen to be approximately logarithmic in tim
This is an artificial relaxation introduced by applying th
Downloaded 11 Dec 2002 to 130.225.222.195. Redistribution subject to 
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quenching procedure at a temperature where the dynami
not separated into vibrations around, and transitions betw
inherent structures, i.e., the quenching procedure is do
more than simply removing the vibrations around inher
structures. Presumably the inherent dynamics aboveTx con-
tains information about the underlying potential energy lan
scape. At the present, however, we do not know how
interpret this, and we do not have an explanation as to w
the ~artificial! initial relaxation appears to be logarithmic
high temperatures.

We now proceed to discuss Angell’s proposal, thatTx

'Tc . We find that both estimated values forTc @0.592
60.005 fromta(T) and 0.57460.005 fromD21(T)# are in
the temperature range wheref c

I is approaching unity. We
note that in the system investigated here two of
asymptotic predictions of the ideal mode coupling theory
not hold;ta andD21 have different temperature dependen

FIG. 5. Parameters describing the fit ofFsA(q57.5,t) andFsA
I (q57.5,t) to

stretched exponentials from Figs. 3~a! and 3~b!, respectively.~a! Relaxation
timesta andta

I vs T. The solid line is a fit tota}(T2Tc)
2g excluding the

lowestT in the fitting ~see text!. ~Inset! ta
I vs ta . ~b! Stretching parameters

b andb I vs T. ~Inset! b I vs b. ~c! Nonergodicity parametersf c and f c
I vs T.

Error bars are estimated from deviations between three indepen
samples. Similar behavior is found for the B particles.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and we do not find time-temperature superposition of
a-part of the self intermediate scattering function. Howev
the argument given by Angell7 ~and Sokolov20! only relates
to Tc as the temperature where power-law fits to experim
tal data tend to break down, i.e., the ‘‘usage’’ of MCT in th
argument is similar to the way we have estimatedTc in Fig.
5~a!, and does not require, e.g., time-temperature superp
tion.

Using the concept of inherent dynamics we have th
found evidence that forT&Tx'Tc the dynamics is domi-
nated by transitions over energy barriers. Using molecu
dynamics simulations of a binary Lennard-Jones mixtur
was demonstrated by Sastryet al. ~Ref. 13! that the regions
of the potential energy landscape a liquid explores depe
on temperature. In particular, Sastryet al. studied the aver-
age inherent structure energy,^EI(T)&, found when quench-
ing an equilibrated liquid at the temperatureT. ^EI(T)& was
found to be ~roughly! constant above a temperatureTA ,
whereas it decreases when the liquid is cooled belowTA ,
i.e., the liquid explores deeper and deeper lying regions
the potential energy landscape. The temperatureTA was
found to be well above the estimated value of the mo
coupling critical temperatureTc , and it was found to coin-
cide with the onset of non-exponential relaxation. We fi
similar behavior in the system investigated here, withTA

'1.0. The temperature dependence of^EI(T)& is related to
the configurational entropy Sconf(E

I)[kB ln@V(EI)dEI#,
where V(EI)dEI is the number of inherent structures b
tween EI and EI1dEI . Sconf(E

I) has recently been calcu
lated by 3 independent groups.16–18It was found that below a
crossover temperature larger thanTc and close toTA , the
total entropy of the system is well approximated by the s
of independent contributions from the configurational a
the vibrational entropy, respectively. Thus, from this ‘‘the
modynamic’’ approach, one finds a crossover tempera
that is considerably higher than the crossover tempera
found when using the inherent dynamics approach prese
here. These two approaches are complementary, and p
different aspects of the potential energy landscape. Our
sults may be more closely related to results found using
stantaneous normal mode analysis.11,32For a soft sphere sys
tem it was found32 that the number of extended unstab
normal modes becomes very small close toTc . Similar re-
sults were found for water~the SPC/E model!.11 These re-
sults were interpreted as indicating that atTc the dynamics
become dominated by potential energy barriers, which
consistent with the results presented here.

IV. TRANSITIONS BETWEEN INHERENT
STRUCTURES

As shown in the previous section, separation of the
namics into vibrations around and transitions between~the
basin of attraction of! inherent structures becomes possib
asT approachesTx , which is close to our lowest simulate
temperatureT50.59. At this temperature, it therefore b
comes meaningful to examine the details of the transiti
between successive inherent structures. We identify s
transitions by quenching the MD configurations every 0t
~i.e., every 10 MD-steps! and looking for signatures of th
Downloaded 11 Dec 2002 to 130.225.222.195. Redistribution subject to 
e
,

-

si-

s

r
it

ds

of

-

d

re
re
ed
be
e-
-

is

-

s
ch

system undergoing a transition from one inherent structur
another. We have considered two such signatures;~i! We
monitor the inherent structure energyEI(t) as a function of
time, as shown in Fig. 6~a!. ~ii ! We monitor the distance in
configuration space DRI(t) between two successiv
quenched configurations33 @Fig. 6~b!#, where

DRI~ t ![uRI~ t10.1!2RI~ t !u ~4.1!

5A(
j 51

N

~r j
I~ t10.1!2r j

I~ t !!2. ~4.2!

Each jump inEI(t) corresponds to a peak inDRI(t), indi-
cating a transition to a new inherent structure. In the~rare!
event where a transition occurs between two inherent st
tures with the same energy,DRI(t) will still exhibit a peak
even in the absence of a jump inEI(t), and for this reason
we use DRI(t) to identify transitions. The condition
DRI(t).0.1 was found to be a sufficient threshold for th
purpose. When evidence of a transition was found in a ti
intervalDt50.1t, this time interval was divided into 10 sub
intervals of Dt50.01t and the procedure described abo
was repeated.

For each transition, we monitor the difference betwe
the particle positions in the two successive inherent str
tures. The distributionp(r ) of all such particle ‘‘displace-
ments’’ averaged over the 12 000 transitions we have ide
fied is shown in Fig. 7. While many particles move only
small distance (r ,0.2) during a transition from one inheren
structure to the next, a number of particles move farther,
in particular, we find that the distribution forr .0.2 is to a
good approximation exponential. At present we have no
planation of the origin of the exponential decay in the tail
p(r ) ~if this is indeed the true functional form!. The dotted
curve is a fit to a power law with exponent25/2, which is a
prediction from linear elasticity theory,34 describing the dis-
placements of particles in the surroundings of a local re
rangement ‘‘event.’’ This power-law fit does not look ver

FIG. 6. Identifying transitions between inherent structures.~a! The inherent
structure energyEI(t) vs time. ~b! DRI @Eq. ~4.1!# vs time. A transition
between~the basin of attraction of! two inherent structures is indicated by
jump in EI(t) and a corresponding peak inDRI(t).
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



no

w
la

e
en
he
at

e

s
s
ea
n

p

in
lly
ew
pe
te

da

t
o

a
b

in
v
h
n
ry
iti

re-
tarts

a
ory
the
of

ns
ring
r in
-
ti-
pa-
le
e

ing
fer-
the

ss-
by
e-
we
igi-

be-
the

s-
of
tial
we

is to

o-
d
ce

ee

h

ns

9839J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 A model glass-forming liquid
convincing by itself, but we note that the exponent was
treated as a fitting parameter~i.e., only the prefactor was
fitted!, and the power lawmust break down for small dis-
placements, since these correspond to distances far a
from the local event, and are thus not present in our re
tively small sample. From the change in behavior ofp(r ) at
r'0.2, it is reasonable to think of particles with displac
ments larger than 0.2 as those taking part in the local ev
and the rest of the particles as merely ‘‘adjusting’’ to t
local event.~Note however, that our data do not imply wh
is cause and what is effect, or even if such a distinction
meaningful.! Using this definition we find that on averag
approximately 10 particles participate in an event.

Figure 7 has two important consequences with regard
points discussed earlier in this paper. The first point relate
the single particle hopping indicated by the secondary p
in 4pr 2Gs(r ,t) ~Fig. 2! at low temperatures. A commo
interpretation of the single particle hopping is that the jum
of a particle from one ‘‘localized state’’~first peak! to the
second localized state~secondary peak!, corresponds to the
transition of the system over an energy barrier from one
herent structure to the next. If such a transition typica
occurs over a single energy barrier, i.e., without any n
inherent structures between the two states, we would ex
to find a preference for displacements of one average in
particle distance (r'1) in Fig. 7. That this isnot the case
demonstrates that the hopping indicated by the secon
peak in 4pr 2Gs(r ,t) at low temperatures isnot due to tran-
sitions over single energy barriers. Instead, as seen in
inherent trajectory in Fig. 3, the jump occurs via a number
‘‘intermediate’’ inherent structures.

The second important consequence of Fig. 7 is that p
ticles in the surroundings of a local event are displaced
small distances. This kind of motion is difficult to detect
the true dynamics, since it is dominated by the thermal
brations. Presumably this kind of motion is the reason w
the inherent trajectory in Fig. 3 shows small displaceme
(&0.2sAA), even when the corresponding true trajecto
seems to vibrate around the same position. When a trans

FIG. 7. Distribution of particle displacements during transitions betw
successive inherent structures atT50.59. The integral of the distribution is
normalized to be the number of particlesN5500. Full curve is a fit to an
exponential, for 0.3,r ,1.0. The dotted curve is a fit to a power law wit
~fixed! exponent25/2 ~Ref. 34! for 0.1,r ,0.2.
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between inherent structures involving significant particle
arrangements in the surroundings occurs, the particle s
vibrating around a position that is slightly displaced, and
corresponding small displacement of the inherent traject
is seen. This view of the dynamics is also consistent with
fact that the first peak in the inherent counterpart
4pr 2Gs(r ,t) ~not shown, see Ref. 24! is not a delta function
in r 50.

By observing, for a number of transitions, the positio
of all particles that moved a distance greater than 0.2 du
a transition, we find these particles to be clustered togethe
‘‘strings,’’ as shown in Fig. 8. Typically, one transition ap
pears to involve just one stringlike cluster. Detailed inves
gations of the transition events will be presented in a se
rate publication. Here we simply note that stringlike partic
motion has been observed also in the true dynamics abovTc

in a similar binary Lennard-Jones mixture.35 Those strings
are found on long time scales and involve particles mov
approximately one interparticle distance, and are thus dif
ent from, but presumably related to, the strings found in
present work.

V. CONCLUSIONS

We have investigated the dynamics of a model gla
forming liquid in terms of its potential energy landscape
‘‘quenching’’ a time series of MD configurations to a corr
sponding time series of inherent structures. In this way
have provided numerical evidence for the conjecture, or
nally made by Goldstein 30 years ago in this journal,5 that
below a crossover temperatureTx the dynamics of the liquid
can be separated into vibrations around and transitions
tween inherent structures. Specifically, by comparing
self-intermediate scattering functionFs(q,t) with its inher-
ent counterpartFs

I (q,t) we presented evidence for the exi
tence ofTx . It is perhaps not surprising that the dynamics
a liquid becomes dominated by the structure of the poten
energy landscape at sufficiently low temperatures. What
have done here using the concept of inherent dynamics,
provide direct numerical evidence for this,and we have
shown that this regime can be reached by equilibrium m
lecular dynamics~for the particular system investigate
here!. To our knowledge this is the first time such eviden
has been presented.

In agreement with previous proposals7,20,21 we find Tx

'Tc , where Tc is estimated from a power-law fit tota .

n

FIG. 8. Before~light! and after~dark! one typical transition, all the particles
which move a distance greater than 0.2sAA . Particles are shown with a
diameter ofsAA . Note that most particles move considerablylessthansAA

~compare Fig. 7!. The cooperative, stringlike nature of the particle motio
during the interbasin transition can be clearly seen.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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This is also the temperature range where single particle h
ping starts to dominate the dynamics, andta becomes on the
order of 1029 s ~Goldstein’s estimate of the shear relaxati
time atTx!.

The fact that we have been able to cool the syste
under equilibrium conditions, to temperatures where
separation between vibrations around inherent structures
transitions between these is~almost! complete, means that i
becomes meaningful to study the individual transitions o
energy barriers, since the transitions in this regime domin
the dynamics. Our two key findings with regards to the in
vidual transitions between inherent structures are~i! single
particle displacements during transitions show no prefere
for displacements on the order of the interparticle distan
showing that the single particle hopping indicated
4pr 2Gs(r ,t) at low T ~Fig. 2! doesnot correspond to tran-
sitions of the system over single energy barriers; and~ii !
particle displacements during transitions are spatially co
lated in ‘‘strings.’’
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