39 research outputs found

    High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6

    Get PDF
    A method for determination of atomic dipole matrix elements of principal transitions from the value of dispersion coefficient C_6 of molecular potentials correlating to two ground-state atoms is proposed. The method is illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach spectroscopy. The following reduced matrix elements are determined < 6S_{1/2} || D || 6P_{1/2} > =4.5028(60) |e| a0 and =6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are consistent with the results of the most accurate direct lifetime measurements and have a similar uncertainty. It is argued that the uncertainty can be considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig

    The SARAO MeerKAT 1.3 GHz Galactic Plane Survey

    Get PDF
    We present the SARAO MeerKAT Galactic Plane Survey (SMGPS), a 1.3 GHz continuum survey of almost half of the Galactic Plane (251○ ≀l ≀ 358○ and 2○ ≀l ≀ 61○ at |b| ≀ 1 5). SMGPS is the largest, most sensitive and highest angular resolution 1 GHz survey of the Plane yet carried out, with an angular resolution of 8″ and a broadband RMS sensitivity of ∌10–20 ÎŒJy beam−1. Here we describe the first publicly available data release from SMGPS which comprises data cubes of frequency-resolved images over 908–1656 MHz, power law fits to the images, and broadband zeroth moment integrated intensity images. A thorough assessment of the data quality and guidance for future usage of the data products are given. Finally, we discuss the tremendous potential of SMGPS by showcasing highlights of the Galactic and extragalactic science that it permits. These highlights include the discovery of a new population of non-thermal radio filaments; identification of new candidate supernova remnants, pulsar wind nebulae and planetary nebulae; improved radio/mid-IR classification of rare Luminous Blue Variables and discovery of associated extended radio nebulae; new radio stars identified by Bayesian cross-matching techniques; the realisation that many of the largest radio-quiet WISE H II region candidates are not true H II regions; and a large sample of previously undiscovered background H I galaxies in the Zone of Avoidance

    A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep

    No full text
    Transcutaneous energy transfer (TET) systems use magnetic fields to transfer power across the skin without direct electrical connectivity. This offers the prospect of lifetime operation and overcomes risk of infection associated with wires passing through the skin. Previous attempts at this technology have not proved suitable due to poor efficiency, large size, or tissue damage. We have developed a novel approach utilizing frequency control that allows for wide tolerance in the alignment between internal and external coils for coupling variations of 10 to 20 mm, and relatively small size (50 mm diameter, 5 mm thickness). Using a sheep experimental model, the secondary coil was implanted under the skin in six sheep, and the system was operated to deliver a stable power output to a 15 W load continuously over 4 weeks. The maximum surface temperature of the secondary coil increased by a mean value of 3.
    corecore