28 research outputs found

    Neutron Diffuse Scattering from Polar Nanoregions in the Relaxor Pb(Mg1/3Nb2/3)O3

    Full text link
    We have studied the neutron diffuse scattering in the relaxor PMN. The diffuse scattering appears around the Burns temperature (~620K), indicating its origin from the polar nanoregions (PNR). While the relative diffuse intensities are consistent with previous reports, they are entirely different from those of the lowest-energy TO phonon. Because of that, it has been considered that this TO mode could not be the ferroelectric soft mode. Recently, a neutron scattering study has unambiguously shown that the TO mode does soften on cooling. If the diffuse scattering in PMN originates from the soft mode condensation, then the atomic displacements must satisfy the center of mass condition. But, the atomic displacements determined from diffuse scattering intensities do not fulfill this condition. To resolve this contradiction, we propose a simple model in which the total atomic displacement consists of two components: δCM\delta_{CM} is created by the soft mode condensation, satisfying the center of mass condition, and, δshift\delta_{shift} represents a uniform displacement of the PNR along their polar direction relative to the surrounding (unpolarized) cubic matrix. Within this framework, we can successfully describe the neutron diffuse scattering intensities observed in PMN.Comment: 7 pages, 7 figures (Revised: 11-16-2001

    Direct evidence of soft mode behavior near the Burns' temperature in PbMg1/3_{1 / 3}Nb2/3_{2 / 3}O3_{3} (PMN) relaxor ferroectric

    Full text link
    Inelastic neutron scattering measurements of the relaxor ferroelectric PbMg1/3_{1 / 3}Nb2/3_{2 / 3}O3_{3} (PMN) in the temperature range 490~K<<T<<880~K directly observe the soft mode (SM) associated with the Curie-Weiss behavior of the dielectric constant ε\varepsilon (T). The results are treated within the framework of the coupled SM and transverse optic (TO1) mode and the temperature dependence of the SM frequency at q=0.075 a* is determined. The parameters of the SM are consistent with the earlier estimates and the frequency exhibits a minimum near the Burns temperature (\approx 650K)Comment: 6 figure

    X-Ray Diffuse Scattering Study on Ionic-Pair Displacement Correlations in Relaxor Lead Magnesium Niobate

    Full text link
    Ionic-pair equal-time displacement correlations in relaxor lead magnesium niobate, Pb(Mg1/3Nb2/3)O3Pb(Mg_{1/3}Nb_{2/3})O_{3}, have been investigated at room temperature in terms of an x-ray diffuse scattering technique. Functions of the distinct correlations have been determined quantitatively. The results show the significantly strong rhombohedral-polar correlations regarding Pb-O, Mg/Nb-O, and O-O' pairs. Their spatial distribution forms an ellipse or a sphere with the radii of 30-80A˚\AA. This observation of local structure in the system proves precursory presence of the polar microregions in the paraelectric state which leads to the dielectric dispersion.Comment: 11 pages, 3 figure

    A Neutron Elastic Diffuse Scattering Study of PMN

    Full text link
    We have performed elastic diffuse neutron scattering studies on the relaxor Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3 (PMN). The measured intensity distribution near a (100) Bragg peak in the (hk0) scattering plane assumes the shape of a butterfly with extended intensity in the (110) and (11ˉ\bar{1}0) directions. The temperature dependence of the diffuse scattering shows that both the size of the polar nanoregions (PNR) and the integrated diffuse intensity increase with cooling even for temperatures below the Curie temperature TC213T_C \sim 213 K.Comment: Submitted to PR

    Disorder and relaxation mode in the lattice dynamics of PbMg1/3_{1/3}Nb2/3_{2/3}O3_3 relaxor ferroelectric

    Full text link
    The low-energy part of vibration spectrum in PbMg1/3_{1/3}Nb2/3_{2/3}O3_3 relaxor ferroelectric was studied by inelastic neutron scattering. We observed the coexistence of a resolution-limited central peak with strong quasielastic scattering. The line-width of the quasielastic component follows a Γ0+Dq2\Gamma_0+Dq^2 dependence. We find that Γ0\Gamma_0 is temperature-dependent. The relaxation time follows the Arrhenius law well. The presence of a relaxation mode associated with quasi-elastic scattering in PMN indicates that order-disorder behaviour plays an important r\^ole in the dynamics of diffuse phase transitions

    Coexistence of the Critical Slowing Down and Glassy Freezing in Relaxor Ferroelectrics

    Full text link
    We have developed a dynamical model for the dielectric response in relaxor ferroelectrics which explicitly takes into account the coexistence of the critical slowing down and glassy freezing. The application of the model to the experiment in PMN allowed for the reconstruction of the nonequilibrium spin glass state order parameter and its comparison with the results of recent NMR experiment (Blinc et al., Phys. Rev. Lett. 83, No. 2 (1999)). It is shown that the degree of the local freezing is rather small even at temperatures where the field-cooled permittivity exceeds the frequency dependent permittivity by an order of magnitude. This observation indicates the significant role of the critical slowing down (accompanying the glass freezing) in the system dynamics. Also the theory predicts an important interrelationship between the frequency dependent permittivity and the zero-field-cooled permittivity, which proved to be consistent with the experiment in PMN (A. Levstik et. al., Phys. Rev. B 57, 11204 (1998))

    Study of the formation processes of a domain nanostructure in relaxor ferroelectrics

    No full text
    We present the results of an investigation into processes of formation of polar nanoregions and the relaxation dynamics of a cubic relaxor ferroelectric (PbMg 1/3Nb 2/3O 3) 0. 9-(pbTiO 3) 0. 1 (PMNPT10), selected to be studied as a model compound. © 2011 Pleiades Publishing, Ltd
    corecore