We have studied the neutron diffuse scattering in the relaxor PMN. The
diffuse scattering appears around the Burns temperature (~620K), indicating its
origin from the polar nanoregions (PNR). While the relative diffuse intensities
are consistent with previous reports, they are entirely different from those of
the lowest-energy TO phonon. Because of that, it has been considered that this
TO mode could not be the ferroelectric soft mode. Recently, a neutron
scattering study has unambiguously shown that the TO mode does soften on
cooling. If the diffuse scattering in PMN originates from the soft mode
condensation, then the atomic displacements must satisfy the center of mass
condition. But, the atomic displacements determined from diffuse scattering
intensities do not fulfill this condition. To resolve this contradiction, we
propose a simple model in which the total atomic displacement consists of two
components: δCM is created by the soft mode condensation, satisfying
the center of mass condition, and, δshift represents a uniform
displacement of the PNR along their polar direction relative to the surrounding
(unpolarized) cubic matrix. Within this framework, we can successfully describe
the neutron diffuse scattering intensities observed in PMN.Comment: 7 pages, 7 figures (Revised: 11-16-2001