1,205 research outputs found

    The controlled teleportation of an arbitrary two-atom entangled state in driven cavity QED

    Full text link
    In this paper, we propose a scheme for the controlled teleportation of an arbitrary two-atom entangled state ϕ>12=agg>12+bge>12+ceg>12+dee>12|\phi>_{12}=a|gg>_{12}+b|ge>_{12}+c|eg>_{12}+d|ee>_{12} in driven cavity QED. An arbitrary two-atom entangled state can be teleported perfectly with the help of the cooperation of the third side by constructing a three-atom GHZ entangled state as the controlled channel. This scheme does not involve apparent (or direct) Bell-state measurement and is insensitive to the cavity decay and the thermal field. The probability of the success in our scheme is 1.0.Comment: 10 page

    A Note on Chern-Simons Solitons - a type III vortex from the wall vortex

    Full text link
    We study some properties of topological Chern-Simons vortices in 2 + 1 dimensions. As has already been understood in the past, in the large magnetic flux limit, they are well described by a Chern-Simons domain wall, which has been compactified on a circle with the symmetric phase inside and the asymmetric phase on the outside. Our goal is two-fold. First we want to explore how the tension depends on the magnetic flux discretized by the integer n. The BPS case is already known, but not much has been explored about the non-BPS potentials. A generic renormalizable potential has two dimensionless parameters that can be varied. Variation of only one of them lead to a type I and type II vortex, very similar to the Abrikosov-Nielsen-Olesen (ANO) case. Variation of both the parameters leads to a much richer structure. In particular we have found a new type of vortex, which is type I-like for small flux and then turns type II-like for larger flux. We could tentatively denote it a type III vortex. This results in a stable vortex with number of fluxes which can be greater than one. Our second objective is to study the Maxwell-Chern-Simons theory and and understand how the large n limit of the CS vortex is smoothly connected with the large n limit of the ANO vortex.Comment: 27 pages, 17 figures; v2.: references added, subsection 3.2 added, explanation added in section 2.

    Study of an Alternate Mechanism for the Origin of Fermion Generations

    Full text link
    In usual extended technicolor (ETC) theories based on the group SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}, the quarks of charge 2/3 and -1/3 and the charged leptons of all generations arise from ETC fermion multiplets transforming according to the fundamental representation. Here we investigate a different idea for the origin of SM fermion generations, in which quarks and charged leptons of different generations arise from ETC fermions transforming according to different representations of SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}. Although this mechanism would have the potential, {\it a priori}, to allow a reduction in the value of NETCN_{ETC} relative to conventional ETC models, we show that, at least in simple models, it is excluded by the fact that the technicolor sector is not asymptotically free or by the appearance of fermions with exotic quantum numbers which are not observed.Comment: 6 pages, late

    Creep behavior of copper-chromium in-situ composite

    Get PDF
    Creep deformation and fracture behaviors were investigated on a deformation-processed Cu-Cr in-situ composite over a temperature range of 200 °C to 650 °C. It was found that the creep resistance increases significantly with the introduction of Cr fibers into Cu. The stress exponent and the activation energy for creep of the composite at high temperatures (≥400 °C) were observed to be 5.5 and 180 to 216 kJ/mol, respectively. The observation that the stress exponent and the activation energy for creep of the composite at high temperatures (≥400 °C) are close to those of pure Cu suggests that the creep deformation of the composite is dominated by the deformation of the Cu matrix. The high stress exponent at low temperatures (200 °C and 300 °C) is thought be associated with the as-swaged microstructure, which contains elongated dislocation cells and subgrains that are stable and act as strong athermal obstacles at low temperatures. The mechanism of damage was found to be similar for all the creep tests performed, but the distribution and extent of damage were found to be very sensitive to the test temperature

    Development of black ice prediction model using GIS-based multi-sensor model validation

    Get PDF
    Fog, freezing rain, and snow (melt) quickly condense on road surfaces, forming black ice that is difficult to identify and causes major accidents on highways. As a countermeasure to prevent icing car accidents, it is necessary to predict the amount and location of black ice. This study advanced previous models through machine learning and multi-sensor-verified results. Using spatial (hill shade, river system, bridge, and highway) and meteorological (air temperature, cloudiness, vapour pressure, wind speed, precipitation, snow cover, specific heat, latent heat, and solar radiation energy) data from the study area (Suncheon–Wanju Highway in Gurye-gun, Jeollanam-do, South Korea), the amount and location of black ice were modelled based on system dynamics to predict black ice and then simulated with a geographic information system in units of square metres. The intermediate factors calculated as input factors were road temperature and road moisture, modelled using a deep neural network (DNN) and numerical methods. Considering the results of the DNN, the root mean square error was improved by 148.6 % and reliability by 11.43 % compared to a previous study (linear regression). Based on the model results, multiple sensors were buried at four selected points in the study area. The model was compared with sensor data and verified with the upper-tailed test (with a significance level of 0.05) and fast Fourier transform (freezing does not occur when frequency = 0.00001 Hz). Results of the verified simulation can provide valuable data for government agencies like road traffic authorities to prevent traffic accidents caused by black ice

    The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations

    Full text link
    Long-lived >100 MeV emission has been a common feature of most Fermi-LAT detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs 080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent with being produced by synchrotron emission of electrons accelerated to high energy by the relativistic collisionless shock propagating into the weakly magnetized medium. Here we show that this high-energy afterglow emission constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8} mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than the previous constraint by X-ray afterglow observations on day scale. This suggests that the preshock magnetic field is strongly amplified, most likely by the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte

    Impurity effects on s+g-wave superconductivity in borocarbides Y(Lu)Ni_2B_2C

    Full text link
    Recently a hybrid s+g-wave pairing is proposed to describe the experimental observation for a nodal structure of the superconducting gap in borocarbide YNi2_2B2_2C and possibly LuNi2_2B2_2C. In this paper the impurity effects on the s+g-wave superconductivity are studied in both Born and unitarity limit. The quasiparticle density of states and thermodynamics are calculated. It is found that the nodal excitations in the clean system are immediately prohibited by impurity scattering and a finite energy gap increases quickly with the impurity scattering rate. This leads to an activated behavior in the temperature dependence of the specific heat. Qualitative agreement with the experimental results is shown. Comparison with d-wave and some anisotropic s-wave studied previously is also made.Comment: 6 pages, 6 eps figure

    Capicua deficiency induces autoimmunity and promotes follicular helper T cell differentiation via derepression of ETV5

    Get PDF
    High-affinity antibody production through the germinal centre (GC) response is a pivotal process in adaptive immunity. Abnormal development of follicular helper T (T(FH)) cells can induce the GC response to self-antigens, subsequently leading to autoimmunity. Here we show the transcriptional repressor Capicua/CIC maintains peripheral immune tolerance by suppressing aberrant activation of adaptive immunity. CIC deficiency induces excessive development of T(FH) cells and GC responses in a T-cell-intrinsic manner. ETV5 expression is derepressed in Cic null T(FH) cells and knockdown of Etv5 suppresses the enhanced T(FH) cell differentiation in Cic-deficient CD4+ T cells, suggesting that Etv5 is a critical CIC target gene in T(FH) cell differentiation. Furthermore, we identify Maf as a downstream target of the CIC-ETV5 axis in this process. These data demonstrate that CIC maintains T-cell homeostasis and negatively regulates T(FH) cell development and autoimmunity. ? The Author(s) 2017.117Nsciescopu

    Non-Abelian Vortices in Supersymmetric Gauge Field Theory via Direct Methods

    Full text link
    Vortices in supersymmetric gauge field theory are important constructs in a basic conceptual phenomenon commonly referred to as the dual Meissner effect which is responsible for color confinement. Based on a direct minimization approach, we present a series of sharp existence and uniqueness theorems for the solutions of some non-Abelian vortex equations governing color-charged multiply distributed flux tubes, which provide an essential mechanism for linear confinement. Over a doubly periodic domain, existence results are obtained under explicitly stated necessary and sufficient conditions that relate the size of the domain, the vortex numbers, and the underlying physical coupling parameters of the models. Over the full plane, existence results are valid for arbitrary vortex numbers and coupling parameters. In all cases, solutions are unique.Comment: 38 pages, late

    Parameterized Complexity of 1-Planarity

    Full text link
    We consider the problem of finding a 1-planar drawing for a general graph, where a 1-planar drawing is a drawing in which each edge participates in at most one crossing. Since this problem is known to be NP-hard we investigate the parameterized complexity of the problem with respect to the vertex cover number, tree-depth, and cyclomatic number. For these parameters we construct fixed-parameter tractable algorithms. However, the problem remains NP-complete for graphs of bounded bandwidth, pathwidth, or treewidth.Comment: WADS 201
    corecore