27 research outputs found

    A chemical shift encoding (CSE) approach for spectral selection in fluorine-19 MRI.

    Get PDF
    To develop a chemical shift encoding (CSE) approach for fluorine-19 MRI of perfluorocarbons in the presence of multiple known fluorinated chemical species. A multi-echo CSE technique is applied for spectral separation of the perfluorocarbon perfluoro-15-crown-5-ether (PFCE) and isoflurane (ISO) based on their chemical shifts at 4.7 T. Cramér-Rao lower bound analysis is used to identify echo combinations with optimal signal-to-noise performance. Signal contributions are fit with a multispectral fluorine signal model using a non-linear least squares estimation reconstruction directly from k-space data. This CSE approach is tested in fluorine-19 phantoms and in a mouse with a 2D and 3D spoiled gradient-echo acquisition using multiple echo times determined from Cramér-Rao lower bound analysis. Cramér-Rao lower bound analysis for PFCE and ISO separation shows signal-to-noise performance is maximized with a 0.33 ms echo separation. A linear behavior (R <sup>2</sup>  = 0.987) between PFCE signal and known relative PFCE volume is observed in CSE reconstructed images using a mixed PFCE/ISO phantom. Effective spatial and spectral separation of PFCE and ISO is shown in phantoms and in vivo. Feasibility of a gradient-echo CSE acquisition and image reconstruction approach with optimized noise performance is demonstrated through fluorine-19 MRI of PFCE with effective removal of ISO signal contributions. Magn Reson Med 79:2183-2189, 2018. © 2017 International Society for Magnetic Resonance in Medicine

    Experimental protocol for MRI mapping of the blood oxygenation-sensitive parameters T(2)* and T(2) in the kidney

    Get PDF
    Renal hypoxia is generally accepted as a key pathophysiologic event in acute kidney injury of various origins, and has also been suggested to play a role in the development of chronic kidney disease. Here we describe a step-by-step experimental protocol for indirect monitoring of renal blood oxygenation in rodents via the deoxyhemoglobin sensitive MR parameters T(2)* and T(2)-a contrast mechanism known as the blood oxygenation level dependent (BOLD) effect. Since an absolute quantification of renal oxygenation from T(2)*/T(2) remains challenging, the effects of controlled and standardized variations in the fraction of inspired oxygen are used for bench marking. This MRI method may be useful for investigating renal blood oxygenation of small rodents in vivo under various experimental (patho)physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis

    Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA

    Get PDF
    Purpose The potential of renal MRI biomarkers has been increasingly recognised, but clinical translation requires more standardisation. The PARENCHIMA consensus project aims to develop and apply a process for generating technical recommendations on renal MRI. Methods A task force was formed in July 2018 focused on fve methods. A draft process for attaining consensus was distributed publicly for consultation and fnalised at an open meeting (Prague, October 2018). Four expert panels completed surveys between October 2018 and March 2019, discussed results and refned the surveys at a face-to-face meeting (Aarhus, March 2019) and completed a second round (May 2019). Results A seven-stage process was defned: (1) formation of expert panels; (2) defnition of the context of use; (3) literature review; (4) collection and comparison of MRI protocols; (5) consensus generation by an approximate Delphi method; (6) reporting of results in vendor-neutral and vendor-specifc terms; (7) ongoing review and updating. Application of the process resulted in 166 consensus statements. Conclusion The process generated meaningful technical recommendations across very diferent MRI methods, while allowing for improvement and refnement as open issues are resolved. The results are likely to be widely supported by the renal MRI community and thereby promote more harmonisation

    Micromechanics of Single Supercoiled DNA Molecules

    Full text link
    Abstract. The theory of the mechanical response of single DNA molecules un-der stretching and twisting stresses is reviewed. Using established results for the the semiflexible polymer including the effect of torsional stress, and for the free energy of plectonemic supercoils, a theory of coexisting plectonemic and extended DNA is con-structed and shown to produce phenomena observed experimentally. Analytical results for DNA extension and torque are presented, and effects of anharmonicities in the plec-tonemic free energy are described. An application of the theory to the problem of torsional-stress-induced cruciform extrusion is also discussed. Key words. DNA, molecular biology, statistical mechanics, polymer physics. AMS(MOS) subject classifications. 82D60, 92C05, 92C40

    Protocols for multi-site trials using hyperpolarized 129Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129Xe MRI clinical trials consortium

    No full text
    Hyperpolarized (HP) 129Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129Xe MRI. Recommendations are described for the most common HP gas MRI techniques—calibration, ventilation, alveolar-airspace size, and gas exchange—across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129Xe MRI for multi-site pulmonary research
    corecore