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Abstract 

Purpose: To develop a chemical shift encoding (CSE) approach for fluorine-19 (19F) MRI of 

perfluorocarbons in the presence of multiple known fluorinated chemical species. 

Theory and Methods: A multi-echo CSE technique is applied for spectral separation of the 

perfluorocarbon perfluoro-15-crown-5-ether (PFCE) and isoflurane (ISO) based upon their 

chemical shifts at 4.7 T. Cramér-Rao lower bound (CRLB) analysis is used to identify echo 

combinations with optimal signal-to-noise performance. Signal contributions are fit with a 

multispectral fluorine signal model using a non-linear least squares estimation reconstruction 

directly from k-space data. This CSE approach is tested in 19F phantoms and in a mouse with a 

2D and 3D spoiled gradient-echo acquisition using multiple echo times determined from CRLB 

analysis. 

Results: CRLB analysis for PFCE and ISO separation shows signal-to-noise performance is 

maximized with a 0.33 ms echo separation. A linear behavior (R2 = 0.987) between PFCE signal 

and known relative PFCE volume is observed in CSE reconstructed images using a mixed 

PFCE/ISO phantom. Effective spatial and spectral separation of PFCE and ISO is shown in 

phantoms and in vivo. 

Conclusion: Feasibility of a gradient-echo CSE acquisition and image reconstruction approach 

with optimized noise performance is demonstrated through 19F MRI of PFCE with effective 

removal of ISO signal contributions. 
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Introduction 

Fluorine-19 (19F) MRI is a highly specific and quantitative technique for cellular and molecular 

detection. MRI of biocompatible 19F contrast agents, such as perfluorocarbons, has shown 

immense promise for visualization of inflammation events as well as monitoring immune and 

stem cell populations in preclinical animal models (1, 2). Fluorinated anesthetics (e.g. 

isoflurane) are commonly used in longitudinal preclinical applications due to the fast induction 

and recovery time, ease-of-use and flexibility in different procedural environments, and minimal 

toxicity. Being an inhaled halogenated ether, isoflurane introduces substantial background 

signal (3, 4), which complicates the interpretation of 19F images. Furthermore, the resonant 

frequencies of isoflurane’s spectral groups may overlap with those of several fluorinated 

contrast agents (5, 6). For these reasons, removal of isoflurane signal from 19F images is highly 

desirable. 

The quantification of fluorine concentrations in vivo among others relies on the specificity 

of the fluorine signal that originates from the contrast agent only. Current approaches for 19F MR 

imaging in the presence of fluorinated anesthetics have often assumed negligible fluorine signal 

contamination from anesthetics. However, confounding anesthetic signal may obfuscate results, 

particularly in anatomical regions of high isoflurane uptake, e.g. peritoneal, thoracic, and cranial 

cavities (4, 7, 8). While certain injectable anesthetics (e.g. ketamine/xylazine) would not 

contribute background signal, access to the controlled substance, ketamine, is limited and 

requires a DEA license in the United States. Further, injectable anesthetics are not easily 

titrated within the MR environment and may require an infusion pump, all of which are not 

conducive for longitudinal preclinical studies. One strategy for removing confounding fluorine-19 

background signals is to characterize the anesthetics accumulation in vivo (5) to determine the 

spatial overlap with contrast agents, while another is to confine radiofrequency (RF) excitation 

and/or signal saturation to the desired chemical species by introducing narrow-frequency 

Gaussian-filtered RF excitation pulses (3). However, frequency-selective RF excitation 

approaches may fail in the presence of large susceptibility variations. Further, signal 

suppression methods tend to suffer from longer scan times and reduced image signal-to-noise 

ratio (SNR). 

Recent advances in model-based chemical shift encoding (CSE) techniques (9, 10) 

exploit a priori knowledge of the resonant frequency separations between chemical species as 

image reconstruction constraints. Such CSE techniques enable chemical species separation 
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with high SNR-efficiency, and are widely used for fat/water separation in 1H MRI (9, 11-14). 

These techniques are based on the acquisition of multiple images, each with a different echo 

time (TE), followed by model-based reconstruction to separate the various chemical species. 

Common Dixon techniques (15-17) rely on image space-based separation of chemical species, 

which is often acceptable for fat/water separation. For instance, the chemical shift separation 

seen for water and fat resonances is on the order of hundreds of Hz at clinical field strengths, 

leading to modest chemical shift artifacts with most (e.g. Cartesian) acquisitions. However, due 

to the wide chemical shift separation between fluorine peaks in 19F MRI (on the order of 

thousands of Hz at 4.7 T), significant phase accumulation occurs during the acquisition 

trajectory, leading to substantial chemical shift artifacts in the presence of multiple fluorine 

species and incorrect specie separation using image space methods. Thus, the image-space 

methods are inadequate for 19F CSE. Instead, a generalized k-space model-based CSE 

reconstruction is needed, similar to the approach proposed by Brodsky et al. (18). This k-space 

signal modeling CSE approach corrects the significant phase accumulation during the imaging 

readout and allows for flexible choice of initial echo time (TEinit), echo spacing (ΔTE), number of 

echo times (NTE), and sampling trajectory. 

In this work, we therefore propose a CSE approach that can be used to separate the 19F 

signal from multiple fluorine-19 species. We demonstrate utility by separating signal arising from 

perfluorocarbon contrast agents from that of anesthetics based on their unique 19F spectrum. 

This CSE approach is implemented to separate perfluoro-15-crown-5-ether (PFCE) from 

isoflurane (here-after referred to as ISO), while its signal-to-noise performance is optimized 

through numerical simulations. Finally, we evaluate the proposed CSE method using both 2D 

and 3D spoiled gradient-echo acquisitions in phantoms and in vivo. 

Theory 

We propose a multiple gradient echo CSE acquisition with images acquired at different echo 

times (  ). The acquired data are processed using non-linear least-squares estimation to 

directly reconstruct the PFCE,          , and isoflurane,          , images from the acquired k-

space data. The signal model (Eq. 1) includes the resonant frequencies of the PFCE peak,   , 

and   additional spectral (e.g. isoflurane) peaks,   , with relative signal amplitude,    (for 

       ), the frequency shift,           , due to local B0 field inhomogeneity and phase 

evolution during the time-dependent frequency encoding readout,      , where   is the time 

relative to the    during the readout. 
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For conciseness, the spatial dependence of the parametric maps          ,          , and 

           was omitted from the signal model. We have assumed negligible contribution from 

T2* in the above signal model when using a TE < 5 ms for all MR acquisitions. Non-localized 19F 

spectroscopy was used to measure    and the multiple    peaks prior to acquisition of 19F CSE 

MR data. These are then input into Eq. 1 as frequency shifts relative to   , which corresponds to 

the acquisition transmit frequency (~0 Hz).  

The proposed reconstruction is based on direct non-linear least-squares estimation from 

k-space. For computational efficiency, the    dimension (which is phase encoded and does not 

suffer from chemical shift artifacts) was Fourier transformed into image space, and the 

reconstruction was performed separately for each   location. In principle, the phase-encoded    

dimension could also be reconstructed directly leading to a 1D problem for each       location. 

However, in the proposed method the reconstruction was performed in 2D       space, to 

improve field map estimation by incorporating field map smoothness regularization in 2D (rather 

than just 1D). In summary, the proposed reconstruction (Eq. 2) minimizes the difference 

between the measured k-space signal (     ) and the signal model in Eq. 1, to reconstruct the 

three unknown parametric maps          . 

                    
         

                     
 

                                                                                     
 

   
                                                             

 

Specifically, the reconstruction for each   location is constrained by assuming a spatially smooth 

main magnetic field where the estimated field map     is constrained to be a linear combination 

of smooth sinusoidal basis functions in 2D,        with relative amplitude,   . 

Methods 

Noise performance optimization: Cramér-Rao lower bound (CRLB) analysis (19) was performed 

to determine the signal-to-noise performance of the image reconstruction using different 

combinations of TEinit and ΔTE for a set number of echo times (NTE). Here, we use the number 

of signal averages (NSA), defined as the variance in a source image (image reconstructed by 
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direct iFFT of k-space data and averaged in the echo dimension) divided by the variance in a 

CSE reconstructed image, as the metric for noise performance. CRLB analysis was repeated for 

several different NTE and in order to appropriately compare results, NSA was normalized to the 

NTE to equal the theoretical effective number of signal averages (NSAeff). CRLB analysis 

assumed a transmit frequency centered on the PFCE resonance frequency (      = 0 Hz). 

Phantom experiments: All MR data were acquired on a 4.7 T preclinical MRI system (Agilent 

Technologies, Santa Clara, CA) using a custom-built quadrature volumetric RF coil tunable to 

either the 1H (100 MHz) or the 19F (188 MHz) frequencies. The RF coil was tuned and matched 

to the 1H frequency for shimming, localization, and relevant MRI sequences. Next, the coil was 

manually re-tuned and matched to the 19F frequency for 19F MRI sequences. The transmit 

frequency for all 19F MR experiments was centered on PFCE’s resonance frequency. Two 

phantoms were created by filling 0.5 mL micro-centrifuge tubes with either PFCE (Exfluoro, 

Round Rock, TX) or ISO (Piramal, Bethlehem, PA). The 19F chemical shift separation between 

   and the multiple    peaks were measured from an MR spectrum collected with a 90° non-

selective excitation, receiver bandwidth (rBW) = 10 kHz, and acquired signal averages = 1 in the 

phantoms and used as frequency inputs in the signal model (Eq. 1) and CSE image 

reconstruction. The feasibility of the CSE technique was demonstrated in these two phantoms 

using a 19F 2D spoiled gradient-echo acquisition with a single TE per repetition time (TR) 

repeated NTE times (TR/TEinit/ΔTE = 20.0/2.8/0.33 ms, NTE = 6, matrix = 128x128, field-of-view 

(FOV) = 48x48 mm2, a single 2 mm slice, rBW = 50 kHz, flip angle = 20°, and signal averages = 

1, scan duration = 41 s). To observe the effect of the B0 field correction, CSE reconstruction was 

performed both with and without the     term from Eq. 1 using the 19F gradient-echo data. 

In a second, quantitative comparison, micro-centrifuge tubes with mixed relative volumes of 

PFCE and ISO (volumes of PFCE/ISO: 700/0, 525/175, 350/350, 175/525, and 0/700 µL) were 

prepared for a total ~700 µL volume. A 3D printed holder supported the micro-centrifuge tubes 

within the RF coil. The mixed relative volume phantom was subsequently imaged using a 3D 

spoiled gradient-echo acquisition with a single TE per TR repeated NTE times with acquisition 

parameters optimized for chemical shift separation and high signal-to-noise through CRLB 

analysis (TR/TEinit/ΔTE = 10.0/2.3/0.33 ms, NTE = 6, matrix = 96x96x24, FOV = 32x32x48 mm3, 

rBW = 30 kHz, flip angle = 10°, signal averages = 1, scan duration = 2 min 18 s). For one signal 

average, the resulting acquisition time per image for a given TE was 23 s. 
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In vivo experiment: To demonstrate feasibility of CSE image reconstruction in vivo, MR data 

was collected in one healthy, male, C57BL/6 mouse anesthetized with 1.5% isoflurane and 

maintained at 36.5 ± 0.5°C throughout MR imaging using a temperature probe and hot-air 

blower. This pilot study complied with institutional animal care and use committee regulations. A 

biocompatible PFCE emulsion was synthesized as a kinetically stable, oil-in-water 

nanoemulsion loaded with PFCE. A 19F MR spectrum was acquired, to determine the in vivo 19F 

chemical shifts and subsequently used in the signal model (Eq. 1) and image reconstruction. 19F 

MRI data was acquired with a 3D spoiled gradient-echo acquisition with a single TE per TR 

repeated NTE times using the chosen TEinit and ΔTE combination from the CRLB analysis and 

confirmed empirically in the phantom experiments (TR/TEinit/ΔTE = 200/2.3/0.33 ms, NTE = 6, 

matrix = 48x24x8, FOV = 80x40x32 mm3, rBW = 18 kHz, flip angle = 20°, signal averages = 8, 

scan duration = 30 min 43 s). For one signal average, the resulting acquisition time per image 

for a given TE was 39 s. However, eight signal averages were acquired in vivo based on 

empirical performance to achieve sufficiently high signal-to-noise to observe background signal 

from ISO uptake. Spectra and images were acquired prior to and after intraperitoneal injection 

of 45 mM of a PFCE emulsion. Anatomic 1H MR data was acquired with a T2-weighted 2D fast 

spin echo sequence (TR/ΔTE = 4431.6/16.5 ms, echo train length = 8, matrix = 256x128, FOV = 

80x40 mm2, spatial resolution = 0.31x0.31 mm2 in-plane with 1 mm slice thickness, rBW = 100 

kHz, signal averages = 3, scan duration = 3 min 33 s). 19F MR images were up-sampled to 

match the matrix dimensions of 1H MR images. The B0 field map was estimated in vivo using a 

separate 1H 2D spoiled gradient echo acquisition (TR/TEinit/ΔTE =103.5/4.2/0.4 ms, NTE = 6, 

matrix = 256x128, FOV = 80x40 mm2, with 2 mm slice thickness, rBW = 78 kHz, flip angle = 

20°, signal averages = 8, scan duration = 14 min 8 sec). 

All simulations, image reconstructions, and data analyses were performed in Matlab 2014b 

(MathWorks, Natick, MA). To determine the performance of the CSE-reconstructed images, 

they were compared to images that were reconstructed separately by direct iFFT of the k-space 

data and averaged in the echo dimension. These images will be referred to as ‘source’ images. 

Results 

The relative chemical shifts between the two spectral groups of ISO (CF3 and CHF2) and the 

singular peak of PFCE at 4.7 T were 1.8 kHz (9.6 ppm) and 0.45 kHz (2.4 ppm) in vitro, 

respectively (Fig. 1a).  Variable signal was seen in the ISO phantom as a result of the spectral 

groups being in- and out-of-phase in the iFFT reconstructed MR images at different TEs (Fig. 
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1b). Chemical shift artifact was also observable in the physically aligned PFCE and ISO 

phantoms. Using the chemical shift separations between the fluorine peaks, CRLB analysis 

provided data acquisition parameters (TEinit = 2.8 ms for 2D and 2.3 ms for 3D, ΔTE = 0.33 ms, 

and NTE = 6) that maximized the theoretical NSAeff for the given fluorinated chemical species 

(Fig. 2). Note that while increasing the NTE included in the CRLB analysis enlarges the regions 

with very high NSAeff (>0.95), an inevitable tradeoff is prohibitively long scan times. The 

acquisition time per image with 8 signal averages for a given TE was 5 min 7 s. Six TEs were 

therefore chosen for subsequent CSE acquisitions in phantoms and in vivo experiments as a 

balance between high NSAeff and scan time. The TEinit values between the 2D and 3D spoiled 

gradient-echo sequences, as noted accordingly in Figure 2, were selected based on the 

minimum achievable TE for the pulse sequence, which also coincided with regions of high 

NSAeff (>0.95) further improving the acquisition efficiency. The NSAeff values from CRLB were 

0.99 and 0.97 for the selected 2D and 3D acquisition parameters optimized in this way, 

respectively. The NSAeff was normalized to the NTE so the reported NSAeff values are less than 

or equal to 1. 

Feasibility of the CSE reconstruction of separate PFCE and ISO 19F images was 

demonstrated in phantoms of 100% PFCE and 100% ISO (Fig. 3). The CSE reconstruction 

spatially and spectrally resolved both fluorine species while eliminating artifacts arising from 

chemical shift and B0 field inhomogeneity. The inclusion of the B0 field estimate in the signal 

model reduced PFCE signal ‘leakage’ into the ISO phantom as noted by the arrowhead in the 

ISO-only images (Fig. 3c & 3e). ROI-based measurements (mean and standard deviation) of 

each phantom in the CSE images are shown directly in Fig. 3. The CSE reconstruction also 

showed effective spatial and spectral separation in mixed concentrations of PFCE and ISO (Fig. 

4). Quantitatively, the measured PFCE and ISO signal levels were directly proportional to their 

known 19F relative volumes in the mixed phantom (Fig. 4d). PFCE signal showed a linear 

behavior (R2 = 0.987) with the known volume fraction, as expected. 

In vivo results demonstrated that the accumulating 19F ISO signal was detectable in the 

peritoneal cavity (Fig. 5a) and can be visualized by 19F MRI (Fig. 5b). After intraperitoneal 

injection of PFCE, substantial dissolved fluorinated gas contamination can be observed in the 

source image compromising interpretation of the PFCE signal (Fig. 5d). CSE reconstruction 

demonstrates that the background ISO signal can be removed from 19F MR images (Fig. 5d) 

enabling visualization of the PFCE alone. The PFCE emulsion signal was detected superior to 

the injection site with some of the emulsion spreading through the peritoneal cavity. 
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Corresponding 19F spectra acquired with a non-selective RF pulse pre- and post-PFCE injection 

shows an absence of PFCE signal prior to injection with significant isoflurane accumulation in 

the first half hour of the experiment (Supporting Fig. S1a). After injection, a PFCE peak was 

observed in the 19F spectrum with a gradual accumulation of ISO over the duration of the in vivo 

scan (Supporting Fig. S1b). An increase in the relative 19F chemical shifts between PFCE and 

the two spectral groups of ISO was observed in vivo, compared to the in vitro results. The 

chemical shifts were measured to be 2.2 kHz (11.7 ppm) and 0.95 kHz (5.1 ppm), respectively 

and there were used as inputs into the signal model (Eq. 1). 

Discussion  

This work introduces a CSE approach to 19F MR imaging of single-resonance perfluorocarbons 

that uses multi-spectral fluorine signal modeling with least-squares estimation to remove 

fluorinated anesthetic signal. Both 2D and 3D spoiled gradient-echo pulse sequences are used 

to demonstrate feasibility of the model-based CSE imaging approach to characterize complex 

spectra in 19F MRI applied to removal of fluorinated anesthetic signal. Further, CRLB analysis is 

used to select acquisition parameters (TEinit, ΔTE, and NTE) for improved signal-to-noise 

performance by maximizing the theoretical NSAeff. 

The CSE methodology proposed here provides the flexibility for applications that require 

chemical shift separation or selective quantification to separate multiple fluorine peaks using 19F 

MRI. The fluorine peak from PFCE can be measured separately from peaks arising from ISO. 

Further, the multiple ISO peaks are inherently corrected for their chemical shift artifact by the k-

space reconstruction. These multiple peaks are effectively superimposed for optimized SNR 

and enhanced image quality, void of chemical shift artifact. This capability to recombine the 

multiple fluorine peaks of ISO in a single CSE reconstructed image may improve the detection 

sensitivity at low concentrations. The removal of ISO background signal from 19F MR images 

may be broadly applicable to additional perfluorocarbon agents that have resonant frequencies 

close to that of ISO’s two spectral group including perfluorooctyl bromide (PFOB) and 

perfluoropolyether (PFPE) (5, 6). The additional chemical shift observed in vivo, compared to 

those observed for the neat formulations in vitro, between the PFCE and ISO spectral groups is 

a direct result of ISO accumulation within different chemical environments (e.g. adipose tissue) 

(20). Subsequent CRLB analysis using the in vivo chemical shifts showed high NSAeff (>0.95) 

with the scan parameters (data not shown). The measured chemical shifts in vivo were used in 

the corresponding 19F CSE image reconstruction of in vivo data. 
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Others have demonstrated the utility of “multi-color” 19F MRI to image two chemically 

shifted fluorine contrast agents using chemical shift imaging (CSI) (21) or chemical shift 

selective (6) techniques, as well as the ability of CSE methods to image a single, complex 19F 

compound without chemical shift artifacts (22). However, our proposed method enables tracking 

of multiple fluorine species simultaneously, without the need for separate and dedicated MR 

acquisitions and/or multiple infusions of different contrast agents. With our proposed approach, 

the number of fluorine species resolvable must be less than the NTE, with well separated peaks. 

19F molecular MRI suffers from low SNR that potentially compromises the CSE image 

reconstruction. To improve 19F MR sensitivity, very low rBW values were used for in vivo studies 

(18 kHz). Typically, the level of chemical shift artifact or B0 field inhomogeneity determines the 

lower limit of the selected rBW. The k-space signal modeling approach (18) corrects for the 

large phase accumulation during the acquisition trajectory as a result of the chemical shift 

separation between fluorine species concurrent with low rBW. Further, inclusion of a B0 field 

map estimation improved the CSE reconstruction and may greatly enhance 19F MRI around 

areas of higher B0 field inhomogeneity. 

Our current approach depends on use of a gradient-echo acquisition. Importantly, 3D 

gradient-echo has both higher SNR-efficiency and no chemical shift in the slice direction 

compared to its 2D counterpart (23) and, therefore, may be better suited for CSE 19F MRI. 

Alternative data acquisition strategies with even higher SNR-efficiency (e.g. bSSFP or FSE) (9, 

22) are desirable and may enable further improvements of the proposed CSE approach. ISO 

and PFCE are both known to have altered transverse relaxation times based on both their 

compartment and chemical environments (20, 24). We have assumed negligible T2* 

contributions in this work. Long T2‘s have been reported for PFCE and PFCE-based emulsions 

between 25-536 ms (6, 25) and ISO in adipose tissue 281 ms (26).  Accounting for T2* in a CSE 

reconstruction model, as has been shown elsewhere in 1H MRI applications (27), may improve 

in vivo quantification of 19F concentrations. Additionally, reduction of the T1 of the imaged 19F 

species may also enable more rapid imaging and improve SNR efficiency. Recently, inclusion of 

lanthanides (e.g. gadolinium) or transition ions (e.g. iron) into 19F label formulations has shown 

improvements in reducing the observed T1 relaxation times, boosting the SNR efficiency (28-

31). These advancements will further improve the proposed CSE approach with increased 

detection sensitivity of 19F in regions of low signal intensity near the noise floor. Lastly, this work 

represents a proof-of-concept in a single animal study. Further testing and characterization is 

warranted in both phantoms and in vivo. This includes acquisition parameter optimization via 
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CRLB analysis using the observed in vivo chemical shifts and testing specific disease models 

where regional uptake of PFCE is expected.  

In conclusion, we have demonstrated the feasibility of a CSE imaging approach for 

separation of anesthetic and contrast agent signals in 19F MRI using acquisition parameters 

optimized for SNR, and direct k-space reconstruction with multispectral fluorine signal modeling. 

Robust reconstruction of spatially isolated spectral components in mixed concentration 

phantoms was demonstrated. The approach also appears to effectively remove signal 

contributions from isoflurane in 19F MR images of PFCE in vivo based on qualitative 

observations pre- and post-injection of PFCE. 
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Figure Captions 

 

Figure 1. An MR spectrum showing the relative fluorine-19 (19F) chemical shifts of PFCE and 

ISO at 4.7 T (a). The molecular structures of PFCE and ISO are color-coded according to their 

respective resonances. The consequence of these different resonances manifests as a 

chemical shift artifact observable in iFFT reconstructed MR images of physically aligned 

phantoms of PFCE and ISO displayed here at three different TEs (b). 
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Figure 2. Noise performance for chemical shift encoded separation of PFCE and ISO is 

dependent on the echo time combination (TEs, TEinit, and ΔTE). In this work, 6 TEs were 

acquired with TEinit = 2.3 ms or 2.8 ms for 3D and 2D imaging, respectively, and ΔTE = 0.33 ms 

resulting in NSAeff>0.95 for PFCE imaging (maximum NSAeff is 1). 
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Figure 3. Feasibility of the chemical shift encoded (CSE) approach is demonstrated in 19F MR 

images of PFCE and ISO phantoms reconstructed with either a conventional iFFT (a), listed 

here as ‘source’ image, or CSE image reconstruction of PFCE signal (b,d) and ISO signal (c,e). 

Reduced residual PFCE signal ‘leakage’ into ISO-only image (arrowheads) is noted when 

including the B0 field estimation in the signal model. ROI-based measurements of mean 19F 

signal ± standard deviation in PFCE and ISO phantoms for CSE reconstructed MR images are 

displayed directly on the figure. 

 

Figure 4. 19F MR images of a phantom with mixed relative volumes of PFCE and ISO 

reconstructed with a conventional iFFT (a) shows chemical shift artifact (white arrow). The true 

PFCE:ISO volume fraction in each phantom is listed on the ‘source’ image. The CSE 

reconstruction demonstrates artifact-free signal recovery in the separate PFCE-only (b) and 

ISO-only images (c). The relative 19F signal was measured from the PFCE-only or ISO-only 

CSE reconstructed images and plotted against the PFCE:ISO volume fraction (d). Dotted lines 

represent the expected signal intensities for the fluorine species based on the known volume 

fraction of PFCE:ISO. Error bars are included as the standard deviation of the measured signal 

within an ROI. 
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Figure 5. In vivo feasibility of CSE image reconstruction of PFCE with removal of background 

ISO signals is demonstrated in a healthy mouse. An anatomical reference image with the noted 

injection site (a) in gray scale is shown. 19F MR images in color scale taken before (b) and after 

(c) intraperitoneal injection a PFCE emulsion, shows substantial isoflurane background signal in 

both source images pre- and post-PFCE injections. No PFCE signal was observed above the 

noise in the PFCE-only pre-injection image while PFCE signal is spread throughout the 

peritoneal cavity as seen in the PFCE-only post-injection image. 
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Supporting Figure S1. Non-selective 19F spectra acquired pre- (a) and post- (b) PFCE injection 

showing the relative signal intensities observed for the PFCE and ISO spectral groups in vivo 

and used to empirically set the expected chemical shift frequencies for the signal model for 

image reconstruction. 

 


