957 research outputs found

    Geochronology and structure of the eastern margin of the Tanzania Craton east of Dodoma

    Get PDF
    The precise position, nature and U-Pb zircon geochronology of the eastern margin of the Tanzania Craton has been studied in the Mpwapwa area, some 60 km east of Dodoma, central Tanzania, in a number of field transects over a ca. 45 km strike length of the craton margin. The rocks to the east of the Tanzania Craton in this area either belong to the Palaeoproterozoic Usagaran belt, or the “Western Granulite” terrane of the Neoproterozoic East African Orogen, according to different authors. The eastern part of the craton is underlain by typical Neoarchaean migmatitic grey granodioritic orthogneisses dated by ICP-MS at 2674 ± 73 Ma. There is a gradual increase in strain eastwards in these rocks, culminating in a 1 to 2 km wide, locally imbricated, ductile thrust/shear zone with mylonites indicating an oblique top-to-the-NW, transpressional sense of movement. East of the craton-edge shear zone, a series of high-grade supracrustal rocks are termed the “Mpwapwa Group”, in view of uncertain age and regional lithostratigraphic correlations. There is an apparent east-west lithological zonation of Mpwapwa Group parallel to the craton margin shear zone. In the west, immediately adjacent to the craton, the group consists of typical “shelf facies” metasediments (marbles, calc-silicates, quartzites etc.). U-Pb dating of detrital zircons from two Mpwapwa Group quartzite samples from this marginal zone contain only Archaean detritus, constraining their maximum depositional age to > ca. 2.6 Ga and suggesting that the group is Neoarchaean in age. The shelf rocks pass eastwards into garnet and kyanite-bearing semi-pelitic gneisses interlayered with bimodal mafic-felsic gneisses, where the mafic amphibolite gneisses may represent meta-basalts and the felsic rocks may have meta-rhyolite, -granite or –psammite protoliths. Massive garnet-clinopyroxene amphibolite layers in the Mpwapwa Group gneisses may have been intrusive mafic sills and possibly correlate with the Palaeoproterozoic Isimani Suite, which outcrops south of the study area and includes 2 Ga eclogites. Zircons from a quartzo-feldsapthic gneiss sample from the bimodal gneisses were dated and showed it to be a probable Neoarchaean rock which underwent metamorphism during the Palaeoproterozoic Usagaran event at ca. 1950 Ma. This event was broadly coeval with subduction, closure of an ocean basin and eclogite formation further south and led to the initial juxtaposition of the two Archaean blocks. The metamorphism probably dates the tectonic event when the Archaean Mpwapwa Group rocks were juxtaposed against the orthogneissic Tanzania Craton. The Mpwapwa Group was intruded by weakly foliated biotite granite at 1871 ± 35 Ma. Zircons in the granite have metamorphic rims dated between 550 and 650 Ma that grew during the East African orogenic event

    Conditions for Adiabatic Spin Transport in Disordered Systems

    Get PDF
    We address the controversy concerning the necessary conditions for the observation of Berry phases in disordered mesoscopic conductors. For this purpose we calculate the spin-dependent conductance of disordered two-dimensional structures in the presence of inhomogeneous magnetic fields. Our numerical results show that for both, the overall conductance and quantum corrections, the relevant parameter defining adiabatic spin transport scales with the square root of the number of scattering events, in generalization of Stern's original proposal [Phys. Rev. Lett. 68, 1022 (1992)]. This could hinder a clear-cut experimental observation of Berry phase effects in diffusive metallic rings.Comment: 5 pages, 4 figures. To appear in Phys. Rev. B (Rapid Communications

    A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles.

    Get PDF
    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1

    Calculation of parity and time invariance violation in the radium atom

    Get PDF
    Parity (P) and time (T) invariance violating effects in the Ra atom are strongly enhanced due to close states of opposite parity, the large nuclear charge Z and the collective nature of P,T-odd nuclear moments. We have performed calculations of the atomic electric dipole moments (EDM) produced by the electron EDM and the nuclear magnetic quadrupole and Schiff moments. We have also calculated the effects of parity non-conservation produced by the nuclear anapole moment and the weak charge. Our results show that as a rule the values of these effects are much larger than those considered so far in other atoms (enhancement is up to 10^5 times).Comment: 18 pages; LaTeX; Submitted to Phys. Rev.

    Conductance fluctuations in diffusive rings: Berry phase effects and criteria for adiabaticity

    Full text link
    We study Berry phase effects on conductance properties of diffusive mesoscopic conductors, which are caused by an electron spin moving through an orientationally inhomogeneous magnetic field. Extending previous work, we start with an exact, i.e. not assuming adiabaticity, calculation of the universal conductance fluctuations in a diffusive ring within the weak localization regime, based on a differential equation which we derive for the diffuson in the presence of Zeeman coupling to a magnetic field texture. We calculate the field strength required for adiabaticity and show that this strength is reduced by the diffusive motion. We demonstrate that not only the phases but also the amplitudes of the h/2e Aharonov-Bohm oscillations are strongly affected by the Berry phase. In particular, we show that these amplitudes are completely suppressed at certain magic tilt angles of the external fields, and thereby provide a useful criterion for experimental searches. We also discuss Berry phase-like effects resulting from spin-orbit interaction in diffusive conductors and derive exact formulas for both magnetoconductance and conductance fluctuations. We discuss the power spectra of the magnetoconductance and the conductance fluctuations for inhomogeneous magnetic fields and for spin-orbit interaction.Comment: 18 pages, 13 figures; minor revisions. To appear in Phys. Rev.

    Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its sub-surface legacy

    Get PDF
    Exceptionally low North American temperatures and record-breaking precipitation over the British Isles during winter 2013–2014 were interconnected by anomalous ocean evaporation over the North Atlantic subpolar gyre region (SPG). This evaporation (or oceanic latent heat release) was accompanied by strong sensible heat loss to the atmosphere. The enhanced heat loss over the SPG was caused by a combination of surface westerly winds from the North American continent and northerly winds from the Nordic Seas region that were colder, drier and stronger than normal. A distinctive feature of the air–sea exchange was that the enhanced heat loss spanned the entire width of the SPG, with evaporation anomalies intensifying in the east while sensible heat flux anomalies were slightly stronger upstream in the west. The immediate impact of the strong air–sea fluxes on the ocean–atmosphere system included a reduction in ocean heat content of the SPG and a shift in basin-scale pathways of ocean heat and atmospheric freshwater transport. Atmospheric reanalysis data and the EN4 ocean data set indicate that a longer-term legacy of the winter has been the enhanced formation of a particularly dense mode of Subpolar Mode Water (SPMW)—one of the precursors of North Atlantic Deep Water and thus an important component of the Atlantic Meridional Overturning Circulation. Using particle trajectory analysis, the likely dispersal of newly-formed SPMW is evaluated, providing evidence for the re-emergence of anomalously cold SPMW in early winter 2014/2015

    Limits on the monopole magnetic field from measurements of the electric dipole moments of atoms, molecules and the neutron

    Full text link
    A radial magnetic field can induce a time invariance violating electric dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe and Hg atoms and the neutron that are produced by such a field are estimated. The contributions of such a field to the constants, χ\chi of the T,P-odd interactions χeNs/s\chi_e {\bf N} \cdot {\bf s}/s and χNNI/I\chi_N {\bf N} \cdot {\bf I}/I are also estimated for the TlF, HgF and YbF molecules (where s{\bf s} (I{\bf I}) is the electron (nuclear) spin and N{\bf N} is the molecular axis). The best limit on the contact monopole field can be obtained from the measured value of the Tl EDM. The possibility of such a field being produced from polarization of the vacuum of electrically charged magnetic monopoles (dyons) by a Coulomb field is discussed, as well as the limit on these dyons. An alternative mechanism involves chromomagnetic and chromoelectric fields in QCD.Comment: Uses RevTex, 16 pages, 4 postscript figures. An explanation of why there is no orbital contribution to the EDM has been added, and the presentation has been improved in genera

    Analyzing Powers for pp → pnπ^+

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478
    corecore