38,428 research outputs found
Nitridation of SiO2 for surface passivation
An attempt is made to relate the electrical properties of silicon dioxide film to the process history. A model is proposed to explain some of the observed results. It is shown that with our present knowledge of the dielectric, silicon dioxide film shows a lot of promise for its use in surface passivation, both for its resistance to impurity diffusion and for its resistance to radiation damage effects
Growth of graphene on 6H-SiC by molecular dynamics simulation
Classical molecular-dynamics simulations were carried out to study epitaxial
growth of graphene on 6H-SiC(0001) substrate. It was found that there exists a
threshold annealing temperature above which we observe formation of graphitic
structure on the substrate. To check the sensitivity of the simulation results,
we tested two empirical potentials and evaluated their reliability by the
calculated characteristics of graphene, its carbon-carbon bond-length, pair
correlation function, and binding energy.Comment: 7 pages, 5 figure
Pinned modes in lossy lattices with local gain and nonlinearity
We introduce a discrete linear lossy system with an embedded "hot spot" (HS),
i.e., a site carrying linear gain and complex cubic nonlinearity. The system
can be used to model an array of optical or plasmonic waveguides, where
selective excitation of particular cores is possible. Localized modes pinned to
the HS are constructed in an implicit analytical form, and their stability is
investigated numerically. Stability regions for the modes are obtained in the
parameter space of the linear gain and cubic gain/loss. An essential result is
that the interaction of the unsaturated cubic gain and self-defocusing
nonlinearity can produce stable modes, although they may be destabilized by
finite amplitude perturbations. On the other hand, the interplay of the cubic
loss and self-defocusing gives rise to a bistability.Comment: Phys. Rev. E (in press
Recommended from our members
Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus.
We have previously shown that gp65 (E3) is a virion structural protein which varies widely in quantity among different strains of mouse hepatitis virus (MHV). In this study, the biosynthetic pathway and possible biological activities of this protein were examined. The glycosylation of gp65 in virus-infected cells was inhibited by tunicamycin but not by monensin, suggesting that it contains an N-glycosidic linkage. Glycosylation is cotranslational and appears to be complete before the glycoprotein reaches the Golgi complex. Pulse-chase experiments showed that this protein decreased in size after 30 min of chase, suggesting that the carbohydrate chains of gp65 undergo trimming during its transport across the Golgi. This interpretation is supported by the endoglycosidase treatment of gp65, which showed that the peptide backbone of gp65 did not decrease in size after pulse-chase periods. This maturation pathway is distinct from that of the E1 or E2 glycoproteins. Partial endoglycosidase treatment indicated that gp65 contains 9 to 10 carbohydrate side chains; thus, almost all of the potential glycosylation sites of gp65 were glycosylated. In vitro translation studies coupled with protease digestion suggest that gp65 is an integral membrane protein. The presence of gp65 in the virion is correlated with the presence of an acetylesterase activity. No hemagglutinin activity was detected
Sheath ionization model of beam emissions from large spacecraft
An analytical model of the charging of a spacecraft emitting electron and ion beams has been applied to the case of large spacecraft. In this model, ionization occurs in the sheath due to the return current. Charge neutralization of spherical space charge flow is examined by solving analytical equations numerically. Parametric studies of potential large spacecraft are performed. As in the case of small spacecraft, the ions created in the sheath by the returning current play a large role in determining spacecraft potential
Resummation Effects in Vector-Boson and Higgs Associated Production
Fixed-order QCD radiative corrections to the vector-boson and Higgs
associated production channels, pp -> VH (V=W, Z), at hadron colliders are well
understood. We combine higher order perturbative QCD calculations with
soft-gluon resummation of both threshold logarithms and logarithms which are
important at low transverse momentum of the VH pair. We study the effects of
both types of logarithms on the scale dependence of the total cross section and
on various kinematic distributions. The next-to-next-to-next-to-leading
logarithmic (NNNLL) resummed total cross sections at the LHC are almost
identical to the fixed-order perturbative next-to-next-to-leading order (NNLO)
rates, indicating the excellent convergence of the perturbative QCD series.
Resummation of the VH transverse momentum (p_T) spectrum provides reliable
results for small values of p_T and suggests that implementing a jet-veto will
significantly decrease the cross sections.Comment: 25 pages, references update
- …