5,763 research outputs found
Dependence of heat transport on the strength and shear rate of prescribed circulating flows
We study numerically the dependence of heat transport on the maximum velocity
and shear rate of physical circulating flows, which are prescribed to have the
key characteristics of the large-scale mean flow observed in turbulent
convection. When the side-boundary thermal layer is thinner than the viscous
boundary layer, the Nusselt number (Nu), which measures the heat transport,
scales with the normalized shear rate to an exponent 1/3. On the other hand,
when the side-boundary thermal layer is thicker, the dependence of Nu on the
Peclet number, which measures the maximum velocity, or the normalized shear
rate when the viscous boundary layer thickness is fixed, is generally not a
power law. Scaling behavior is obtained only in an asymptotic regime. The
relevance of our results to the problem of heat transport in turbulent
convection is also discussed.Comment: 7 pages, 7 figures, submitted to European Physical Journal
On Conditional Statistics in Scalar Turbulence: Theory vs. Experiment
We consider turbulent advection of a scalar field T(\B.r), passive or
active, and focus on the statistics of gradient fields conditioned on scalar
differences across a scale . In particular we focus on two
conditional averages and
. We find exact relations between
these averages, and with the help of the fusion rules we propose a general
representation for these objects in terms of the probability density function
of . These results offer a new way to analyze
experimental data that is presented in this paper. The main question that we
ask is whether the conditional average is linear in . We show that there exists a dimensionless
parameter which governs the deviation from linearity. The data analysis
indicates that this parameter is very small for passive scalar advection, and
is generally a decreasing function of the Rayleigh number for the convection
data.Comment: Phys. Rev. E, Submitted. REVTeX, 10 pages, 5 figs. (not included) PS
Source of the paper with figure available at
http://lvov.weizmann.ac.il/onlinelist.html#unpub
Cumulus cloud venting of mixed layer ozone
Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone and aerosols occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. The experiments utilized the airborne Ultra-Violet Differential Absorption Lidar (UV-DIAL) system. This system provides simultaneous range resolved ozone concentration and aerosol backscatter profiles with high spatial resolution. Evening transects were obtained in the downwind area where the air mass had been advected. Space-height analyses for the evening flight show the cloud debris as patterns of ozone typically in excess of the ambient free tropospheric background. This ozone excess was approximately the value of the concentration difference between the mixed layer and free troposphere determined from independent vertical soundings made by another aircraft in the afternoon
Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes
The dynamics of relativistic stars and black holes are often studied in terms
of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with
different effective potentials . In this paper we present a systematic
study of the relation between the structure of the QNM's of the KG equation and
the form of . In particular, we determine the requirements on in
order for the QNM's to form complete sets, and discuss in what sense they form
complete sets. Among other implications, this study opens up the possibility of
using QNM expansions to analyse the behavior of waves in relativistic systems,
even for systems whose QNM's do {\it not} form a complete set. For such
systems, we show that a complete set of QNM's can often be obtained by
introducing an infinitesimal change in the effective potential
Passive Scalar: Scaling Exponents and Realizability
An isotropic passive scalar field advected by a rapidly-varying velocity
field is studied. The tail of the probability distribution for
the difference in across an inertial-range distance is found
to be Gaussian. Scaling exponents of moments of increase as
or faster at large order , if a mean dissipation conditioned on is
a nondecreasing function of . The computed numerically
under the so-called linear ansatz is found to be realizable. Some classes of
gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4
pages) with 2 postscript figures. Send email to [email protected]
High-Order Contamination in the Tail of Gravitational Collapse
It is well known that the late-time behaviour of gravitational collapse is
{\it dominated} by an inverse power-law decaying tail. We calculate {\it
higher-order corrections} to this power-law behaviour in a spherically
symmetric gravitational collapse. The dominant ``contamination'' is shown to
die off at late times as . This decay rate is much {\it
slower} than has been considered so far. It implies, for instance, that an
`exact' (numerical) determination of the power index to within
requires extremely long integration times of order . We show that the
leading order fingerprint of the black-hole electric {\it charge} is of order
.Comment: 12 pages, 2 figure
Comparison and analysis of aircraft measurements and mesoscale atmospheric chemistry model simulations of tropospheric ozone
The Regional Acid Deposition Model (RADM) has been applied to several of the field experiments which were part of the Acid Models Operational and Diagnostic Evaluation Study (Acid MODES). The experiment which was of particular interest with regards to ozone photochemistry involved horizontal zig-zag flight patterns (ZIPPER) over an area from the eastern Ohio River valley to the Adirondacks of New York. Model simulations by both the standard resolution RADM (delta x = 80 km) and the nested grid RADM (delta x = 26.7 km) compare well to measurements in the low emission regions in central Pennsylvania and upstate New York, but underestimate in the high emission upper Ohio River valley. The nested simulation does considerably better, however, than the coarse grid simulation in terms of horizontal pattern and concentration magnitudes. Analysis of NO(x) and HO(x) concentrations and photochemical products rates of ozone show that the model's response to large point source emissions is very unsystematic both spatially and temporally. This is due to the models instability to realistically simulate the small scale (subgrid) gradients in precursor concentrations in and around large point source plumes
Unconventional Gravitational Excitation of a Schwarzschild Black Hole
Besides the well-known quasinormal modes, the gravitational spectrum of a
Schwarzschild black hole also has a continuum part on the negative imaginary
frequency axis. The latter is studied numerically for quadrupole waves. The
results show unexpected striking behavior near the algebraically special
frequency . This reveals a pair of unconventional damped modes very
near , confirmed analytically.Comment: REVTeX4, 4pp, 6 EPS figure files. N.B.: "Alec" is my first, and
"Maassen van den Brink" my family name. v2: better pole placement in Fig. 1.
v3: fixed Refs. [9,20]. v4: added context on "area quantum" research; trimmed
one Fig.; textual clarification
Probability Density Function of Longitudinal Velocity Increment in Homogeneous Turbulence
Two conditional averages for the longitudinal velocity increment u_r of the
simulated turbulence are calculated: h(u_r) is the average of the increment of
the longitudinal Laplacian velocity field with u_r fixed, while g(u_r) is the
corresponding one of the square of the difference of the gradient of the
velocity field. Based on the physical argument, we suggest the formulae for h
and g, which are quite satisfactorily fitted to the 512^3 DNS data. The
predicted PDF is characterized as
(1) the Gaussian distribution for the small amplitudes,
(2) the exponential distribution for the large ones, and (3) a prefactor
before the exponential function for the intermediate ones.Comment: 4 pages, 4 figures, using RevTeX3.
- …