1,109 research outputs found

    Sodium and potassiumvapor Faraday filters re-visited: Theory and applications

    Get PDF
    A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of the filter transmission on atomic density and external magnetic field strength, as well as the frequency dependence of transmission, are explained in physical terms. As examples, applications of the computed results to ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to enable measurement of the density of mesospheric oxygen atoms are briefly discussed

    Developed turbulence: From full simulations to full mode reductions

    Get PDF
    Developed Navier-Stokes turbulence is simulated with varying wavevector mode reductions. The flatness and the skewness of the velocity derivative depend on the degree of mode reduction. They show a crossover towards the value of the full numerical simulation when the viscous subrange starts to be resolved. The intermittency corrections of the scaling exponents of the pth order velocity structure functions seem to depend mainly on the proper resolution of the inertial subrange. Universal scaling properties (i.e., independent of the degree of mode reduction) are found for the relative scaling exponents rho which were recently defined by Benzi et al.Comment: 4 pages, 5 eps-figures, replaces version from August 5th, 199

    Inertial- and Dissipation-Range Asymptotics in Fluid Turbulence

    Full text link
    We propose and verify a wave-vector-space version of generalized extended self similarity and broaden its applicability to uncover intriguing, universal scaling in the far dissipation range by computing high-order (\leq 20\/) structure functions numerically for: (1) the three-dimensional, incompressible Navier Stokes equation (with and without hyperviscosity); and (2) the GOY shell model for turbulence. Also, in case (2), with Taylor-microscale Reynolds numbers 4 \times 10^{4} \leq Re_{\lambda} \leq 3 \times 10^{6}\/, we find that the inertial-range exponents (\zeta_{p}\/) of the order - p\/ structure functions do not approach their Kolmogorov value p/3\/ as Re_{\lambda}\/ increases.Comment: RevTeX file, with six postscript figures. epsf.tex macro is used for figure insertion. Packaged using the 'uufiles' utilit

    Bottleneck effects in turbulence: Scaling phenomena in r- versus p-space

    Get PDF
    We (analytically) calculate the energy spectrum corresponding to various experimental and numerical turbulence data analyzed by Benzi et al.. We find two bottleneck phenomena: While the local scaling exponent ζr(r)\zeta_r(r) of the structure function decreases monotonically, the local scaling exponent ζp(p)\zeta_p(p) of the corresponding spectrum has a minimum of ζp(pmin)0.45\zeta_p(p_{min})\approx 0.45 at pmin(10η)1p_{min}\approx (10 \eta)^{-1} and a maximum of ζp(pmax)0.77\zeta_p(p_{max})\approx 0.77 at pmax8L1p_{max}\approx 8 L^{-1}. A physical argument starting from the constant energy flux in p--space reveals the general mechanism underlying the energy pileups at both ends of the p--space scaling range. In the case studied here, they are induced by viscous dissipation and the reduced spectral strength on the scale of the system size, respectively.Comment: 9 pages, 3figures on reques

    Supersymmetric Intersecting Branes on the Waves

    Full text link
    We construct a general family of supersymmetric solutions in time- and space-dependent wave backgrounds in general supergravity theories describing single and intersecting p-branes embedded into time-dependent dilaton-gravity plane waves of an arbitrary (isotropic) profile, with the brane world-volume aligned parallel to the propagation direction of the wave. We discuss how many degrees of freedom we have in the solutions. We also propose that these solutions can be used to describe higher-dimensional time-dependent "black holes", and discuss their property briefly.Comment: 12 pages, LaTe

    A Note on Noncommutative Brane Inflation

    Get PDF
    In this paper, we investigate the noncommutative KKLMMT D3/anti-D3 brane inflation scenario in detail. Incorporation of the brane inflation scenario and the noncommutative inflation scenario can nicely explain the large negative running of the spectral index as indicated by WMAP three-year data and can significantly release the fine-tuning for the parameter β\beta. Using the WMAP three year results (blue-tilted spectral index with large negative running), we explore the parameter space and give the constraints and predictions for the inflationary parameters and cosmological observables in this scenario. We show that this scenario predicts a quite large tensor/scalar ratio and what is more, a too large cosmic string tension (assuming that the string coupling gsg_s is in its likely range from 0.1 to 1) to be compatible with the present observational bound. A more detailed analysis reveals that this model has some inconsistencies according to the fit to WMAP three year results.Comment: 20 pages, 5 figures; accepted for publication in JCA

    Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jin-Ping Laboratory

    Full text link
    We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses (mχm_{\chi}) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1 kg\cdotday exposure and 160 eVee threshold for TI analysis, and 1107.5 kg\cdotday exposure and 250 eVee threshold for AM analysis. The sensitive windows in mχm_{\chi} are expanded by an order of magnitude to lower DM masses with Migdal effect incorporated. New limits on σχNSI\sigma_{\chi N}^{\rm SI} at 90\% confidence level are derived as 2×2\times10327×^{-32}\sim7\times1035^{-35} cm2\rm cm^2 for TI analysis at mχm_{\chi}\sim 50-180 MeV/c2c^2, and 3×3\times10329×^{-32}\sim9\times1038^{-38} cm2\rm cm^2 for AM analysis at mχm_{\chi}\sim75 MeV/c2c^2-3.0 GeV/c2c^2.Comment: 5 pages, 4 figure

    Search for Light Weakly-Interacting-Massive-Particle Dark Matter by Annual Modulation Analysis with a Point-Contact Germanium Detector at the China Jinping Underground Laboratory

    Full text link
    We present results on light weakly interacting massive particle (WIMP) searches with annual modulation (AM) analysis on data from a 1-kg mass pp-type point-contact germanium detector of the CDEX-1B experiment at the China Jinping Underground Laboratory. Datasets with a total live time of 3.2 yr within a 4.2 yr span are analyzed with analysis threshold of 250 eVee. Limits on WIMP-nucleus (χ{\chi}-NN) spin-independent cross sections as function of WIMP mass (mχm_{\chi}) at 90\% confidence level (C.L.) are derived using the dark matter halo model. Within the context of the standard halo model, the 90\% C.L. allowed regions implied by the DAMA/LIBRA and CoGeNT AM-based analysis are excluded at >>99.99\% and 98\% C.L., respectively. These results correspond to the best sensitivity at mχm_{\chi}<<6 GeV/c2~{\rm GeV}/c^2 among WIMP AM measurements to date.Comment: 5 pages, 4 figure

    A Matrix Model for the Null-Brane

    Full text link
    The null-brane background is a simple smooth 1/2 BPS solution of string theory. By tuning a parameter, this background develops a big crunch/big bang type singularity. We construct the DLCQ description of this space-time in terms of a Yang-Mills theory on a time-dependent space-time. Our dual Matrix description provides a non-perturbative framework in which the fate of both (null) time, and the string S-matrix can be studied.Comment: 26 pages, LaTeX; references adde
    corecore