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A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of
the filter transmission on atomic density and external magnetic field strength, as well as the frequency depen-
dence of transmission, are explained in physical terms. As examples, applications of the computed results to
ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to
enable measurement of the density of mesospheric oxygen atoms are briefly discussed. © 2009 Optical Society
of America

OCIS codes: 260.1440, 260.5430, 260.5740, 260.7490.

1. INTRODUCTION

Extremely narrowband optical filters are required in
many situations for extracting useful signals in the pres-
ence of a broadband background. For signals at an atomic
resonance, an advantage is attained by using the Faraday
effect, which involves a circularly birefringent, dichroic
medium between crossed polarizers, as shown in Fig. 1.
This medium can be an atomic vapor in an axial magnetic
field, causing a rotation of the polarization of light near
an atomic resonance while the polarization of off-
resonance light is unaffected. Advantages of the atomic
vapor Faraday filter include its wide field of view, high
background rejection, and high peak transmission [1].
These types of filters are particularly attractive, as the re-
sulting bandwidth is only several gigahertz (1 GHz=1.2
x 1073 nm @ 600 nm) wide, about 400 times narrower
than 1 nm bandwidth optical interference filters commer-
cially available.

A Faraday filter of this type was first introduced by
Ohman in 1956 [2]. Studies using a variety of atomic spe-
cies have since been performed [1,3,4]. Specifically, filters
for Na were developed by Agnelli et al. and Chen et al.,
while studies of the relationship between vapor tempera-
ture and cell transmission were performed by Hu et al.
and Zhang et al. for Na and K filters, respectively [5-8].
Our work has led to a Na vapor Faraday filter deployed in
the Colorado State University Na lidar system [9], allow-
ing the measurement of mesopause region (~90 km alti-
tude) temperature and horizontal wind under sunlit con-
ditions, thus permitting studies of the solar atmospheric
tides and their variability [10].

Our current interest in the Faraday filter stems from
ongoing development of a spectrometer to measure the Na
nightglow D,/D; intensity ratio in the mesopause region.
Slanger et al. suggested that the varying Do/D; results
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from variation in the ratio of the concentration of atomic
oxygen to the concentration of molecular oxygen [O]/[Os]
due to competing chemical processes [11]. Measuring the
variation between the two chemical pathways requires an
extremely high resolution spectrometer—on the order of
the bandwidth of a Faraday filter. By using a pair of Far-
aday filters, with their transmission functions indepen-
dently optimized as will be shown, we can determine
valuable information on the important atomic oxygen con-
centration.

Designing the spectrometer requires theoretical calcu-
lations of filter transmissions. Analysis of available litera-
ture showed that most publications are either missing
complete derivations or are not easily adaptable to differ-
ent situations, thus limiting their usefulness. For ex-
ample, Yeh and Van Baak provide only a limited treat-
ment of the quantum mechanical description of atomic
states, ignoring the hyperfine structure, while Dressler et
al. give a detailed solution, but only for weak external
magnetic fields, which is unsuitable for our high-field ap-
plication [12—14]. Yin and Shay present a theory valid for
arbitrary magnetic field for a cesium Faraday filter oper-
ating at the Cs Dy line, but their letter lacks detail to
make it useful for others to replicate [15]. This paper not
only details the complete calculation of Faraday filter
transmission, which is applicable to all values of external
magnetic field, but our results are also readily adaptable
for other applications.

In Section 2, we detail the classical calculation of the
filter transmission and then relate this to the quantum-
mechanical derivation of the complex susceptibility in
Section 3. Section 4 explains the theoretical results for
both Na and K and contains tabulated current values for
all relevant constants and coefficients. Appendix A con-
tains the calculation of transition matrix elements.

© 2009 Optical Society of America
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Fig. 1. Schematic of an atomic vapor Faraday filter, consisting
of a vapor cell in an axial magnetic field between crossed
polarizers.

2. CLASSICAL THEORY: FILTER
TRANSMISSION

To calculate filter transmission, we express the optical re-
sponse of the medium in terms of a complex susceptibility
X:(@)=x,+ix}., where the * represents left- and right-
handed circular polarizations of the incident light. The
complex susceptibility relates the wavenumber £ and an-
gular frequency w in the dispersion relation, since

N Ty rrA Tl UL I
=—\A+xy.+ixp)=—|1+—+i—|,
c\ Xe+ X c 2 2

where ¢ is the speed of light. This is valid for relatively
low vapor density, a situation suitable for most applica-
tions. The quantum mechanical derivation of y.(w) is
given in Section 3.

After the first polarizer of the Faraday filter, the ran-
domly polarized input electric field, entering from the left
of Fig. 1, is linearly polarized, which we denote as the x
direction. The two linear polarizations (¥ and y) can be ex-
pressed as a sum of circular polarizations written in

terms of circular polarization + and — coordinates:

£-2 £42
X=- , andy=1i . (2)
VE \1'5

The input electric field, E(z,t)= %[Qi(z ,w)e it
+E%(z, w)e!“?], enters the vapor cell at z=0 and t=0. After
a cell length z=L and time ¢, the light will have passed
through the vapor cell and the electric field will be

\/’

—exp(i{g(1+0.5XL+O.5ixZ)L}>:}, (3)
C

which contains (for each circular polarization) an expo-
nential decay or absorption term depending on x”, and an
oscillatory term depending on 1+0.5)x'—this is the index
of refraction.

A second, crossed polarizer will select the light polar-
ized in the y direction, so the transmission coefficient will

|Q§-5/|2 1 o .
$(v) = 2 1 exp| - —xilo [ +exp| - — ‘L

Xy + X, X=X
-2exp| - — L |cos| — L||. 4
c 2 c 2

We can define the Faraday rotation 6y as the angle of po-

EO w
¢(L,w)=- —=| exp| i —(1+0.5x, +0.5i)L ¢ |+
2 c
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larization rotation of the output light relative to the ini-
tial linear polarization:

wX, =X

Op=—
Fc4

T , ™
L= 5()& - X)L = X(An)L, (5)

where An is the difference in the index of refraction of the
two circular polarizations (i.e., circular birefringence).

3. QUANTUM-MECHANICAL THEORY

A. Derivation of Susceptibility

Since an atomic vapor is an ensemble of many atoms, its
state may be represented by a density matrix: p
=3,|)pn{,| [16]. To model the interaction of the atom in
an external magnetic field, perturbation theory is used.
The Schrodinger equation for the evolution of the density
matrix of a system with Hamiltonian Hy+ yH’, including
a damping term to model interactions such as collisions,
is

dpa/_?(t)
dt

1 &paﬁ
= E{[Horp(t)]aﬁ + [yHI(t)ap(t)]aB} +

random
1
= i_ﬁ{ﬁwaﬂpaﬂ + [yHI(t)ap(t)]aﬁ} - Faﬁpaﬂ(t) ’ (6)

where p,(t) represents an element of the density matrix
between energy eigenstates of Hy, a, and B, where w,g is
the associated transition frequency. The damping con-
stant I 5 is the natural linewidth of the transition. This
means that I',z/m=A,z/(27), where A,z is the Einstein
coefficient for the transition rate between the two states.
H, is the base Hamiltonian, and H(¢) is the interaction
Hamiltonian, with y being the strength of the perturba-
tion.

In perturbation theory, p,z can be expressed in the form
of a power series, paﬁ(t)zz?;ofp%, with each term ob-
tained from a hierarchy of equations; the first-order equa-
tion is

dpl(t)
dt  ih

{fiwoppd(®) + [H (), 0]} = T upplid®). (7)

For the electric dipole approximation, H!(¢)=-er-E(t)
=-§Srt [ EH(we O + € (w)e'!], with —er’ ;=—e(alr*|p) as
the electric dipole moment of an atomic electron with
charge e connecting the |@) and |B) eigenstates, and E(¢)
being the electric field of light propagating along the axis
of the Faraday filter. Defining

1
—i Wi 1) [
Pop(0) = Lo @™ + o1 (w)e™], (®)

the solution to Eq. (7) is

k(0 0),.k k
(1) 1 e(raﬂp(ﬁlg - pgxczraﬁ)e
pp(w) == > . . )
ﬁk:x,y w — (,Oaﬁ+ ll—‘alg

The expectation value of the polarization is
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1
P(t) = (- Ner) = - NeTr{pV(t)r] = E[P(w)e‘i‘“‘ + P (w)e .

(10)

To avoid confusion in notation, we decompose the vec-
tors, P(w), E(w), and r into Cartesian coordinates. For an
isotropic medium, both the polarization and electric field
are transverse to the propagation direction Z, so combin-
ing Egs. (9) and (10) gives

Ne? _ (%= pO)r rt E*(w)
Piw) = —72 i a0

a,Bk w—waﬁ‘f'lraﬁ

where j and % represent the components (£,7).

Due to the axial symmetry of the magnetic field, the
circular polarizations are eigenmodes of the system. We
can transform the Cartesian coordinates into circular po-
larizations using (2), and rewriting (11) in terms of the
relevant dipole moment, —ery ;=~e(a|r*|B), transition fre-
quency, s, and damping constant, I'; ;. We then have:

Pelw) = eoxiM(0)€.(0) — P (w)

Ne® _ (pgl(r®) gof? = P2 (r%) ol
=——> . (12)
eoft " 0=y +ily,

By assuming that in the zero-order, only the ground state
is populated, we can rewrite Eq. (12) (replacing 8 with g
for “ground state”):

2

Ne 1
(o) = Pl ————
Oh CER O 1

1
- —) (13)

0+ W+l
where w},=-wy, and I',,=T;, have been assumed.
Since the resonance 11ne 1s narrow (F < w), and for the
range of frequencies of interest, w+ w— ~2w >F— , Eq.
(13) reduces to

YD(w) = — > pO|(r*),.. 2 il )
( ) E |( )ag| (zwig(wzg_w_irig))

(14)
Including a Doppler broadening due to an atom’s random

motion with Gaussian distributed line of sight speed v,
Eq. (14) becomes

XD () = P f (D) ol” €xp(= v*/u?)dv
[Vig

—(V/I\) —v- L(Fag/ZW)]
(15)

2’77'80ﬁ wn-u

where u=2kgT/m, and kg, T, and m are respectively, the
Boltzmann constant, temperature, and atomic mass. We
have also replaced e2|r |2 with |(p.) 4% for electric dipole
moment. The integral in Eq (15) is the complex Faddeeva
function [17] and can be rewritten in real and imaginary
components as
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N
! R ()
Xulr) = 2megh \,ﬂuz Pag
fc (02 agl* (Vg = (VIN) = v)exp(- v/u?)dv
>< b
> [(vVs, = (W/N) = »)* + (5 /2m)%]
(16)
N
14 . (0)
Xo(v) = oo \,’Truazg Pt
(P aag) P(Thg/2m)exp(- v/u?)dv
Xf . @@
o (g = (WIN) = v)? + (T5/2m)%]

In practice, the ground state is a multiplet, and the fac-

tor p(o) takes into account any differences in fractional
populatlon in the various ground states. From Maxwell-
Boltzmann statistics, p( )

Z= 2 exp<

(18)

where E;, not to be confused with the electric field, is the
ground-state energy eigenvalue from Appendix A.

B. Derivation of Transmission Matrix Elements

The Hamiltonian governing the splitting of individual en-
ergy levels due to the hyperfine structure and Zeeman
splitting is [18]

H=H,+H

T _
H = HHFS + HZeeman
B,

=A@ e 1)

3
x| 3(I-J)%+ §(I'J)—I(I+ 1J(J +1)

+gyuBod — grunBol, (19)

where H, and H! are the base and interaction Hamilto-
nians, respectively. The parameters A; and B, represent
the strength of the hyperfine magnetic dipole and electric
quadrupole interactions; vectors I and J are the nucleus
and electron total angular momentum operators with
magnitudes I and J; up and uy are the Bohr and nuclear
magnetons; By is the external magnetic field strength;
and g, and g; are the Lande-g factors of the atom and of
the nucleus; g; may be related to </, orbital angular mo-
mentum L, and electron spin S as [19]

3J(J+1)+SS+1)-L(L+1)

7= 27T+ 1) : 20

In order to evaluate the transition matrix element of
the dipole moment in Eq. (15) and the energies of the
eigenstates, we must first solve the eigenvalue problem of
the individual atomic states. The first step is to choose a
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Fig. 2. Energy level diagram for Na showing the 32P3,2 excited states. (a) The single fine structure state, with a degeneracy of 16. (b)
The hyperfine splitting case with no external magnetic field. The |F) eigenstate notation and degeneracies (in parentheses) are indicated
to the right, and the scale in GHz is to the left. (¢) The exact solution for the Zeeman structure for an external magnetic field of 2000G.
The states are broken up into four closely spaced groups due to the different values for u; and ug. Each Zeeman state has a degeneracy
of 1. The |m; m,) eigenstate notations are listed to the right, and the scale in GHz is to the left.

set of basis states; here the unperturbed Hamiltonian in-
cludes the Coulomb attraction of the nucleus and the in-
teractions between atomic electrons. Thus the eigenstates
of Hy are |I J m; m;) with total electronic angular mo-
mentum and nuclear spin as good quantum numbers, and
they have a degeneracy of (2 +1)(2I+1). Under the influ-
ence of H!, some of the degeneracy will be lifted. In the
limit of zero (or low) magnetic field, the coupling between
the atomic electrons and the nucleus will be dominant,
and the eigenstates of Hy+Huyyg are |I J F mp), with the
total angular momentum of the atom (including the
nucleus) F=I+dJ; the energy eigenvalues will then depend
on the strengths of hyperfine interactions, A; and B. In
the limit of high magnetic field, its interaction with the
atom will cause I and J to align to the external field sepa-
rately. This would allow the use of |I J m;my) as the
eigenstates of Hy+Hyeeman; however, to account for hyper-
fine interactions, the eigenvalues should include the diag-
onal contribution from Hypg as an approximation. For a
solution valid at all values of magnetic field strength, an
appropriate choice would be |I J @ mg), which reduces to

|I J Fmp) in the low or zero field limit, and to |I J m; m)
in the high field limit. For simplicity we choose to write
the |JI@Q mg) states as a linear superposition of
|I J m; m) states [18]. The total Hamiltonian in this rep-
resentation is not diagonal; it must then be diagonalized
to obtain the eigenstates and eigenvalues of the system.
Figure 2 shows an example of splitting in the zero field
limit (middle column) and the high field limit (right col-
umn) for the sodium ?P,,, excited state.

The solution for energy eigenvalues and eigenvectors
and for transition matrix elements is in Appendix A. With
the electric dipole matrix transition elements, |(p.)qgl,
evaluated, Eqgs. (16) and (17) may be used to calculate y’
and x”, from which 6r and F(v) may be calculated via Eqgs.
(4) and (5).

4. SAMPLE RESULTS AND DISCUSSION

A computer program was written in the Interactive Data
Language (IDL) [20], using built-in functions to calculate

Table 1. Atomic Properties®

Na K K
A 23 39 41
Mass (u) 22.989768 38.963707 40.961825
81 1.478392 0.26099 0.1432543
Abundance 100% 93.26% 6.73%
AJ (GHZ) BJ (GHZ) 8 AJ (GHZ) BJ (GHZ) 8 AJ (MHZ) BJ (MHZ) 8
281 0.8858130644 0 2 0.2308598601 0 2 0.1270069352 0 2
2Pl 0.0944 0 2/3 0.027775 0 2/3 0.015245 0 2/3
2]?3/2 0.018572 0.002723 4/3 0.006093 0.002786 4/3 0.003363 0.003351 4/3

“Values for mass are from [22], g; are from [23], abundance are from [22], and A; and B; are from [24-27].
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Table 2. Linestrength®, Transition Vacuum Wavelength, and Linewidth

Ref. Na K
D, D, D, D,
\ (nm) 28] 589.7558 589.1582 770.108 766.701
S=28, (e2a,?) [29] 37.3 37.3 51.6 51.6
Av (GHz) (28] 0.00977 0.00980 0.00608 0.00616

“Linestrength S is defined in Appendix A.

eigenvalues and eigenstates, which agreed exactly with
longhand calculations. The complex Faddeeva function
was calculated using an algorithm reported by Schreier
[17].

Filter transmissions and associated 0r were calculated
for both Dy and D; transitions of Na and K. Tables 1 and
2 give the necessary constants and coefficients. Values of
g7 were calculated using the method detailed in [21].

The presence of different isotopes will affect the values
of the A; and B constants and g; values used in the cal-

1

D, Transmission
D, Faraday rotation/n (radians)

S
)
T
N
i
.
=
1

-
- &)
T

D, Transmission
D, Faraday rotation/n (radians)

-0.5

-5
Frequency offset from 589.1582 (GHz)
Fig. 3.

D, Transmission
D, Faraday rotation/r (radians)

D, Transmission
D, Faraday rotation/n (radians)

culation. Na has only one stable isotope with mass num-
ber A=23, so the calculation can be done exactly as de-
scribed. K has two dominant stable isotopes, A=39 and
A=41, and so y for K becomes a sum over the two isotopes
weighted by their abundances, 93.26% and 6.73%, respec-
tively.

One parameter is yet to be defined: vapor density. The
density of the atomic vapor is a function of its tempera-
ture and pressure. In our particular vapor cell, we control
the temperature of the reservoir (see Fig. 1) containing

05— T T T T T T T
NaD1§ : :

——
O

N

FE

o
~

o
w
T

o
N

o
=%
taa ]

o
3]

o

.
ot
3]

Frequency offset from 589.7558 (GHz)

(a) Dy and (b) D, transmission as a fraction of input linear polarization (solid) and Faraday rotation in units of 7 (dashed) vs.

frequency (GHz) for a Na vapor Faraday filter optimized for D,. (¢) and (d) are the same for a D; optimized filter. Filter parameters are
listed in Table 3. The letters in (a) refer to the three cases described in the text.



664 J. Opt. Soc. Am. B/Vol. 26, No. 4/April 2009

solid and liquid Na (or K) to set the vapor pressure on the
coexistence curve. Another controller fixes the tempera-
ture of the main body of the cell, which is the vapor tem-
perature. From the ideal gas law the vapor density is pro-
portional to this vapor pressure and inversely
proportional to the temperature of the vapor. Data for va-
por pressure as a function of saturated vapor temperature
is given for both solid or liquid Na and K by Honig and
Kramer [30], and we derived an equation using a curve-fit
method similar to that described in [30]. For Na, the va-
por pressure equation is

log1o(Pys) = 71.899 — 9217.2(T,..) ! + 40693000(T.)

+0.0061264(T,s) — 9.6625 In(T'e.), (21)
and for K
log10(Px) = 69.53 — 10486(T,..) ' + 1.8658 X 10%(T,.) 2
+0.0027286(Tes) — 8.5732 In(Te), (22)

where T\ is the temperature at the solid or liquid reser-
voir and P is the pressure in Torr.

0.8 T

o
o

o
IS

D, Transmission
D, Faraday rotation/n (radians)
N

15 ——r————r—r—————r———

A
W)
— |
o
~

D, Transmission
D, Faraday rotation/n (radians)

Frequency offset from 766.701 (GHz)

D1v Transmission
D, Faraday rotation/n (radians)

D, Transmission
D, Faraday rotation/xn (radians)
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Figures 3 through 6 show results calculated from the
computer program, with the filter parameters listed in
Table 3. Notice that the filter temperatures are chosen to
respectively optimize the Dy transition in parts (a) and (b)
of Figs. 3 and 4 and to optimize the D transition in parts
(c) and (d) of Figs. 3 and 4. When mesospheric sodium
nightglow is sent through the two Na Faraday filters with
cell and reservoir temperature settings optimized to mini-
mize error from photon noise, the detected signals may be
processed to deduce Na Dy/D; ratio, thereby the ratio be-
tween the concentration of atomic oxygen to the concen-
tration of molecular oxygen [O]/[Og].

In the curves for x' and x”, shown in Figs. 5 and 6,
there are two groups of curves. Each set of curves is a
summation of the curves for the various Zeeman split
transitions with Amj;==+1, which is the selection rule for

the circular + and = polarizations defined in Section 2.
The central value of each group, indicated by the peak in
the curve for y” or the zero crossing point of x’ is labeled
as v; for the curves on the left and vj; for the curves on the
right, and can be thought of as a resonance frequency for

T T T T T T T T

PR T R N 1

P N R S R A R
-10 -5 0 5 10
Frequency offset from 770.108 (GHz)

Fig. 4. Same as Fig. 3, except for K. Filter parameters are listed in Table 3.
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Table 3. Filter Parameters used to Generate Figs.
2-5, and v{ and v; Transition Frequencies

Na K
L (cm) 4
By (G) 1850 700
D, D, D, D,
optimized optimized optimized optimized
T.es (°C) 180 164 94 76
Teenn (°C) 186 169 104 79
D, v} (GHz) 3.6 1.3
D,v, (GHz) -3.6 -1.3
D, v (GHz) 2.5 1.0
Dy, (GHz) -2.5 -1.0

Frequency offset from 589.1582 (GHz)

¥ and y”

Vol. 26, No. 4/April 2009/J. Opt. Soc. Am. B 665

the circular polarization. This allows y to be written as y,
as was done in Egs. (16) and (17) of Section 2.

By comparing the figures with the relevant equations,
we can gain physical insight to what occurs in a Faraday
filter. To facilitate this appreciation, we further consider
the transmission function near three specific frequencies:
A, at line center; B, off resonance; and C, at the resonance
at either v or v [see Fig. 3(a)l. For cases A and B, there
is no absorption and the exponential factors in Eq. (4) are
all unity, and the transmission reduces to F(v)= %[1
—cos(26p)]=sin?6p. For case A the 6 should be nonzero,
since y, and y_ are of opposite sign, and §(v) varies peri-
odically between 0 and near 1 as vapor density varies, so
for fixed B and cell length, we can easily adjust the vapor
density to vary transmission at the line center. For case
B, 6r=0, since far from resonance both x; and x’ have the
same value and §(v)=0. For case C, at v for example, x|
is zero. While x” is nonzero, x/ is large enough to render

-5
1510 —— T
110

510

T o N B B
-10 -5 0 5 10

Frequency offset from 589.7558 (GHz)

Fig. 5. x’ and y” curves for (a) Na D, and (b) D, lines split by the Zeeman effect due to the 1850 Gauss external magnetic field. Solid
gray curve is x’ for o_, gray dashed curve is y” for o_, black solid curve is ' for o,, and black dashed curve is y” for o,.

5
2510° ———————1—T—T—T—"—"T"—"—1"

2107

15105 Leveveinnnnn. R '-. .......... .............

1940° [ o6 wvmsmion v waeams s s thoweags - [ .............

¥ and y”
ob)
T
N

-510 :_ ............. ............. ............ .............

-1 10° :_ ............. .............. s .............

45105 L v v o .
-10 -5 0 5 10
Frequency offset from 766.701 (GHz)

¥ and y”

-5
1510° —————1+—"T—+—1T"—"—117

Frequency offset from 770.108 (GHz)

Fig. 6. Same as Fig. 5, only for K.
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the associated exponential factors zero. In this case, one
circular polarization is totally absorbed, and the electric
field of the other polarization is reduced by the second po-
larizer by a factor of % Therefore, F(v)=0.25 at either v
or v,. In practice, the measured transmission can be
scaled to i at those frequencies to avoid the more involved
normalization measurement described in [6].

5. CONCLUSIONS

We have presented a complete theory of the atomic vapor
Faraday filter. In addition to upper atmospheric lidar, the
results and associated computer program can now be
used for various applications, including our studies of the
physics and chemistry of the mesospause region. Other
uses abound; Faraday filters can also be used to investi-
gate Na and K atoms in the photosphere of the sun [5]
and to investigate lower atmosphere winds with a sodium

il

and the numbers above the kets will be used as a simpler
notation. We now proceed to solve the eigenvalue problem
for the total Hamiltonian.

Raising and lowering operators I, and o/, allows H' to
be written as a sum of three terms, according to the power
of raising or lowering operators:

4
1-1

22

3
11
22

2
3-1

292

1
31
22

B,
21(I - 1)J(2J - 1)

H.o=gyusBoJ, — grpuBol, + Ayl J, +
1
X| 3\ L, LdJ, + Z(I+J_I_J+ +I_J 1. J)
3
+ §IZJ2 -II+1)JJ+1) |,

B, 3

Ay
Hy=—20J +1J)+—— 2> =
a= oy U+ L) o T - 1) 2

X {IZJZ(LJ_ +I1J)+ U, J_+1.J,)dJ,
1
+ §(I+J_ +I1.J,) |,

B, 3
= (I J T +1.J,I.J,).
2[(1_1) ( +' +' + + +)

T T o (A2)
J(2J -1)4

H12

Continuing with the 2S,, (or 2P, ) example, since there
are 8 states, the Hamiltonian will be an 8 X8 matrix in
block-diagonal form with the subscripts using the nota-
tion of Eq. (Al):

5
-11
22
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lidar [31], among other applications. The sample results
presented help to further illustrate nuances in the theory.
Our computer program can be made available on request.
The approach in this paper is readily adaptable to other
alkali atoms, which have the same electronic structure
but different nuclear spin. For example, cesium has [
=7/2 and, therefore, the degeneracy is doubled, but the
electronic dipole transition probabilities, Eqs. (A5) and
(A6) in Appendix A, are the same as Na and K.

APPENDIX A: TRANSMISSION MATRIX
ELEMENT CALCULATIONS

1. Details of the Derivation of Transition Matrix
Elements

The |I J m; m ) base states are now abbreviated |m; m;).
As an example, the states %S,, and ?P,,, have J=1/2 (I
=3/2 for Na and K). The set of 8 |m; m) eigenstates is

6 7 8
-1-1 -31 -3-1
> 7?> 7§>‘?7> ’ (A1)
[
HL1 0
H2,2 H2,3
H3,2 H3,3
H4,4 H45
Hies = Hy, Hi,
H6,6 Hg;
H7,6 H77
0 H8.8
(A3)

The values for the Hamiltonian matrix elements for these
states of Na/K are listed here:

3A 1 3
Hi{=-A;+— Bo— =814, Bo,
11= Ay 2gJMB 0 2g1M 0

lA 1 1
Hgg=—-A;—— Bo + =814, B0,
66= 4417 2gJMB 0 ZgIM 0

3 1 3
Hyo=- ZAJ - §gJMBBO - §g1l/~n50,
3 1 3
Hyq=- ZAJ + EgJMBBo + EgI/-LnBO’
1 1 1
Hsg= ZAJ + EgJ:“BBO - Egllu'nBO’
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1 3

3
Hgg=—-A;—— By + — By,
88= 4 J 2gJMB 0 zgmn 0

1 1 1
H,,=—-A;-— Bo— =g14,Bo,
44 Phind ngMB 0 zglﬂ 0

3
H2,3 =H3,2 =H6,7 =H7,6 = ?AJ,

1 1 1
H.-=—-A;+— By + =g, Bo,
5,5 Phind ngMB 0 zglﬂ 0

Hys=H;s,=A,. (A4)

The blocks in the Hamiltonian matrices, at most 2 X2,
can be solved independently and easily, yielding energy
eigenvalues E and eigenstates with their associated coef-
ficients. The ?P,, state can be solved similarly; however,
it is a 16X 16 block-diagonal matrix with a maximum
block size of 4 X 4.

With the energy levels and eigenstate coefficients de-
termined, we can calculate the transition frequencies and
probabilities of the allowed transitions. The transitions of
interest are electric dipole with selection rules Am;=0
and Am ;= +1 for absorption or emission of a circularly po-
larized photon in the filter. The transition probability is
given by the square of the transition matrix element
[(mjm/;|p.|mm ;)|? where primed and unprimed represent
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excited and ground states. This may be written as product
of 3-j symbols and the reduced matrix element (I'J’||p||IJ)
[32]. This can be further reduced to the reduced matrix el-
ement between states in the “basic” model of the atom us-
ing 6-j symbols [33]. This basic-model reduced matrix el-
ement, |(!'|[p[|)|?, is known as the line strength, S, of the
transition; it is the total intensity of the line and is experi-
mentally determined and tabulated in a National Bureau
of Standards (NBS) publication [29] and reproduced in
Table 2. The total transition probability of each Zeeman
transition is given by

[immjlp.mm ) = |al?|b*(2J" + 1)(2J + 1)
J 1 TN g 82
x -m; £1 my) |J I 1 So

) 1" J S|
=F1F2(2J +1)(2J+ 1) J 1 1 So,

(A5)
where a and b are the expansion coefficients of the appro-

priate eigenstate for the ground and excited states as de-
fined above. The 3-j symbol is

Jo1 g
-m; £1 my

and

Table 4. D; Allowed Transition F; Value and Polarization

%S P, Fy Polarization
13/2,1/2) bs-|3/2,-1/2)+by,|1/2,1/2) by_[2 2
bs_|8/2,-1/2)+bg,|1/2,1/2) [bg_|? z
a,_|3/2,-1/2)+a,,]1/2,1/2) 13/2,1/2) lag_|? 3
by|1/2,-1/2)+by,|-1/2,1/2) |ag,[2[bs|? Z
bs_|1/2,-1/2)+bg,|-1/2,1/2) |ag,|?[bs_|? 2
as_|3/2,-1/2)+a3,]1/2,1/2) 13/2,1/2) lag_|? 3
by |1/2,-1/2)+by,|-1/2,1/2) |ag,|?[by|? z
bs_|1/2,-1/2)+bg,|-1/2,1/2) |ag,|?/bs_|? 2
a,|1/2,-1/2)+ay,|-1/2,1/2) by_|3/2,-1/2)+by,[1/2,1/2) lag_|?[bs, |2 3
bs_|3/2,-1/2)+bs,[1/2,1/2) las_|?|bs,[? 3
be_|-1/2,-1/2)+bg,|-3/2,1/2) |ag,|?[be_|? Z
by |-1/2,-1/2)+b4,|-3/2,1/2) |ag,/?[bs_[? 2
a5_|1/2,-1/2)+az,|-1/2,1/2) by_|3/2,-1/2)+by,[1/2,1/2) las_|?|bs, |2 1
bs_|3/2,-1/2)+bs,[1/2,1/2) las_|?|bs, [? 3
be_|-1/2,-1/2)+bg,|-3/2,1/2) |ag.|%[be_|? z
b, |-1/2,-1/2)+b4,|-3/2,1/2) |ag,|?[bs_|? 2
ag_|-1/2,-1/2)+aq,|-3/2,1/2) by |1/2,-1/2)+by,|-1/2,1/2) lag_|?|ba,[? 3
bs_|1/2,-1/2)+bg,|-1/2,1/2) lag_|?|bs.[? 3
|-3/2,-1/2) |ag,|? z
a;_|-1/2,-1/2)+aq,|-3/2,1/2) by |1/2,-1/2)+by,|-1/2,1/2) laz_|?[by,[? 3
bs_|1/2,-1/2)+bs,|-1/2,1/2) laz_|?bs.|? 3
|-8/2,-1/2) laz,|? 2
|-3/2,-1/2) bg_|-1/2,-1/2)+bg,|-3/2,1/2) [be.|? 3
by |-1/2,-1/2)+b4,|-3/2,1/2) [b7,[2 3
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Table 5. Dy Allowed Transitions F; and F,; Values and Polarization

281 P, F.F, Pol.
13/2,1/2) |3/2,3/2) 1/4 +
by _05|3/2,-1/2)+by5/1/2,1/2)+by 1 5|-1/2,3/2) by _o5%/12 z
b5 _05/3/2,-1/2)+bs5 0 5/1/2,1/2)+bs 1 5/-1/2,3/2) [bs_o5|%/12 z
be,-05/3/2,-1/2)+Dbg o5/1/2,1/2)+bg 1 5|-1/2,3/2) [bs _o5/%/12 Z
ay_|3/2,-1/2)+a,,|1/2,1/2) b 53/2,1/2)+by 15/1/2,3/2) lag_|*[bg 0512/ 12+|ag, [*|by 1 5/7/4 +
b3,o.5|3/2» 1/2>+b3,1.5‘1/2,3/2> ‘32-|2‘b3,045‘2/12+|32+|2|b3,1A5|2/4 +
by_153/2,-8/2)+bq_o5/1/2,-1/2) lag-?[bg,_151%/4 +ag.[*b7 o 5*/12 z
+by705-1/2,1/2)+by; 1 5-3/2,3/2)
bg,_15/3/2,-3/2)+bg_o5[1/2,-1/2) lag |?|bg 1 5/4+|az,|?|bg o 5%/12 z
+bg 5—1/2,1/2)+bg 1 5|-3/2,3/2)
bo,_15/3/2,-8/2)+bg_o5/1/2,-1/2) |ag-[?[bg,_151%/4 +ag.[*bg _o.5*/12 z
+bg o5—1/2,1/2)+bg 1 5|-3/2,3/2)
b1g,_153/2,-3/2)+byg _o5/1/2,-1/2)+ lag|2[b1g 1 5/2/4+|ag,]?[b1g o 5>/ 12 z
b1o,05-1/2,1/2)+b1g 1 5-3/2,3/2)
as_|3/2,-1/2)+ag,|1/2,1/2) b2 o53/2,1/2)+by 15/1/2,3/2) las_|*[bg 052/ 12+|ag, [*|by 1 5|7/4 +
b3,0.5|3/2, 1/2>+b3,1.5‘1/2,3/2> \a3_|2\b3,0_5\2/12+|a3+|2|b3,15|2/4 +
b7,-1A5|3/2y—3/2>+b7,-05|1/2y-1/2>+ \a3_|2\b7,_1'5|2/4+|a3+\2\b7,_0‘5|2/12 z
b7osl-1/2,1/2)+bq 1 5|-3/2,3/2)
bs,-1A5|3/2y—3/2>+b8,-05|1/2y-1/2>+ ‘3-3—|2‘b8,—1.5|2/4+|a3+‘2‘b8,—0.5|2/12 z
bg5-1/2,1/2)+bg _; 5/-3/2,3/2)
]09,-15|3/2 ,—3/2)+b9,_0‘5|1/2 ,=1/2)+ ‘33-|2‘b10,-1,5|2/4+ |a3+\2|b10,_0‘5\2/12 z
b g5|-1/2,1/2)+bg 1 5|-3/2,3/2)
blO,—145‘3/2’_3/2>+b10,—045‘1/2’_1/2>+ ‘33—|2‘b10,—1.5|2/4+ |'<13+‘2|b10,-0‘5‘2/12 z
b1g,05/-1/2,1/2)+byg15-3/2,3/2)
a,|1/2,-1/2)+a,,|-1/2,1/2) by, 05/3/2,-1/2)+Dby05/1/2,1/2)+by 1 5-1/2,3/2) \a4_|2\b470‘5\2/12+|a4+|2|b4,15|2/4 +
bs,05/8/2,-1/2)+b505/1/2,1/2)+bgs 1 5|-1/2,3/2) lay|2Ibs o512/ 12+ |ay,|?[bs 1 512/ 4 +
be,_05/3/2,-1/2)+bg o5/1/2,1/2)+bg 1 5|-1/2,3/2) lay |*[bg 0512/ 12+|ay,[*|bs 1.5/7/4 +
b11,-145‘1/27—3/2>+b11,-045‘—1/2 ,—1/2)+ ‘34-|2‘b11,-15|2/4+ |a4+\2|b11’_0‘5\2/12 z
b11,05/-3/2,1/2)
b12,-145‘1/2,—3/2>+b12,-045‘—1/2 ,=1/2)+ ‘34-|2‘b12,-15|2/4+ |a4+\2|b12,_0‘5\2/12 z
b1g05/-3/2,1/2)
b13,-145‘1/2,—3/2>+b13,-045‘—1/2 ,—1/2)+ ‘34-|2‘b13,-15|2/4+ |a4+\2|b13,_0‘5\2/12 z
bissl-3/2,1/2)
as_|1/2,-1/2)+a5,|-1/2,1/2) by, 05/3/2,-1/2)+by05/1/2,1/2)+by 1 5]-1/2,3/2) las_|?[by 052/ 12+ a5, [*[by 1 5/2/4 +
b5,0513/2,~1/2)+b5,05/1/2,1/2)+15 1 5|-1/2,3/2) |as[*bs,0.5/ 12+ |a5.[*[bs 1 5|7/ 4 +
be 05l3/2,-1/2)+bg 0 5/1/2,1/2) +bg 1 5/-1/2,3/2) |as_|*bg,0.51*/ 12+ |a5.[*bg,1 5|/ 4 +
bi1-15/1/2,-8/2)+b1y _o5]-1/2,-1/2)+ ‘as-|2‘b11,-1A5|2/4+ |35+‘2|b11,-0A5‘2/12 z
b11,05/-3/2,1/2)
blZ,—LS‘]-/z:_3/2>+b12,—0.5‘_1/2 ,—1/2)+ \a5_|2\b12’_15|2/4+ |35+‘2|b12,-05‘2/12 z
b1g05/-3/2,1/2)
b13,-1A5‘1/2a—3/2>+b13,-0.5‘—1/2 ,=1/2)+ ‘35-|2‘b13,-15|2/4+ |a5+\2|b13,_05\2/12 z
b1305/-3/2,1/2)
ag_|-1/2,-1/2)+ag,|-3/2,1/2) b7,_15/3/2,-3/2)+by _51/2,-1/2)+ lag_|*[b7 0512/ 12+ |ag,[*|bs 1 5/7/4 +
b70sl-1/2,1/2)+by 1 5-3/2,3/2)
bg _15[3/2,-3/2)+bg _o5[1/2,-1/2)+ |a6_|*bs 0,51/ 12+ |a6.|*[bs 1.5/ 4 +
bg5]-1/2,1/2)+bg 1 5|-3/2,3/2)
be;,-1A5|3/2 y—3/2>+b9,-05|1/2 ,=1/2)+ ‘36—|2‘b9,045‘2/12+ |as+|2|b9,15|2/4 +
bg o51—1/2,1/2)+bg 1 5|-3/2,3/2)
bio,-153/2,-3/2)+byg _o5/1/2,-1/2)+ lag_[*[b1o,0.5*/ 12+ ]ag,[*b1g 1 5%/ 4 +
b1g,05/-1/2,1/2)+byg15-3/2,3/2)
]014,-145‘—1/2 ,—3/2>+b14,-045|—3/2 ,—1/2) ‘36—|2‘b14,—1,5|2/4+ |36+‘2|b14,—045‘2/12 z
bis_15/-1/2,-8/2)+by5_o5-3/2,-1/2) ‘ae-|2‘b15,-1A5|2/4+ |36+‘2|b15,-0A5‘2/12 z
a;_|-1/2,-1/2)+aq,|-3/2,1/2) by _15/3/2,-3/2)+bq _51/2,-1/2)+ lag_|*[b7 0512/ 12+|az,[*|by 1 5/7/4 +

b7osl-1/2,1/2)+bq 1 5|-3/2,3/2)
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Table 5. (Continued)

ZS1/2 2]-:’3/2 FiF, Pol.
bs _15/3/2,-3/2)+bg_o5/1/2,-1/2)+ laz_|?[bg 0.5/ 12+ a7, [*[bg 1 5/*/4 +
bg5/-1/2,1/2)+bg 1 5|-3/2,3/2)
bg,_15/3/2,-8/2)+bg _o51/2,-1/2)+ ‘37—|2‘b9,05‘2/12+ |a7+|2|b9,1A5|2/4 +
bg o5l—1/2,1/2)+bg 1 5|-3/2,3/2)
bio-153/2,-3/2)+byg _o5/1/2,-1/2)+ la7_[*[b1o05*/ 12+ a7, [2b1g 1 52/ 4 +
b1g,05/-1/2,1/2)+byg15-3/2,3/2)

]014,-1f,‘—1/2 ,—3/2>+b14,-05|—3/2 ,—1/2) ‘37-|2‘b14,-15|2/4+ |a7+‘2|b14,-0A5‘2/12 z

]015,-1.5‘—1/2 7—3/2>+b15,-0.5|—3/2 ,—1/2) ‘37—|2‘b15,—1.5|2/4+ |a7+\2|b15,_0_5\2/12 z

|-3/2,-1/2) by11511/2,-3/2)+by; _o5/-1/2,-1/2)+ [b1105%/12 +

b11,05/-3/2,1/2)

b1z _15/1/2,-3/2)+byg_o5/-1/2,-1/2)+ [b1g,05%/12 +

big05/—-3/2,1/2)

bis_151/2,-3/2)+by3 _o5/-1/2,-1/2)+ [b13.05%/12 +

b1305/-3/2,1/2)

|-3/2,-3/2) 1/4 +
g s

|<m;m:][P:|m1mJ>|2 =FFy-S,, (A8)

J 11 3

is the 6-j symbol; their values are from Tables 5 and 6 in
Edmonds [34]. F; and Fy are defined as

Fy=lalbl%,
J 1 g\

Fy= , . (A6)
-mj; +*1 my

These probabilities are tabulated for the Na and K
Zeeman-split hyperfine transitions for each circular polar-
ization component of the 2P,,—2S;, (D;) and %P,,
—»281/2 (Dgy) transitions, as discussed below. Note that
with the choice of the |I,J,m;,m ) base states, the elec-
tronic dipole moments of the transitions are independent
from the nuclear spin of the system.

2. D, Transition Probabilities of Allowed Transitions
For this transition J'=1/2,J=1/2,1'=1 (P-state), [=0 (S-
state), and S=1/2. By inserting these values into Eq.
(A5), the transition probability is found to be

2
[(mimJlp.mmp? = F1Fy—S,, (AT)
3

with Fy=1/3 from Eq. (A6). Table 4 shows the values of F';
of the allowed transitions, as well as for which o, circular
polarization. The subscripts on the a and & coefficients
represent which state and m; value they correspond to.

3. D, Transition Probabilities of Allowed

Transitions

For this transition J'=3/2,J=1/2,1'=1 (P-state), [=0 (S-
state), and S=1/2. By inserting these values into Eq.
(A5), the transition probability is found to be

where Fy=1/12 or 1/4, depending on whether |mj|=1/2,
or 3/2, respectively, as indicated in Table 5. Table 5 shows
the values of F;Fy of the allowed transitions, as well as
the o, circular polarization. The subscripts on the ¢ and
coefficients represent which state and m; value they cor-
respond to.
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