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A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of
the filter transmission on atomic density and external magnetic field strength, as well as the frequency depen-
dence of transmission, are explained in physical terms. As examples, applications of the computed results to
ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to
enable measurement of the density of mesospheric oxygen atoms are briefly discussed. © 2009 Optical Society
of America
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. INTRODUCTION
xtremely narrowband optical filters are required in
any situations for extracting useful signals in the pres-

nce of a broadband background. For signals at an atomic
esonance, an advantage is attained by using the Faraday
ffect, which involves a circularly birefringent, dichroic
edium between crossed polarizers, as shown in Fig. 1.
his medium can be an atomic vapor in an axial magnetic
eld, causing a rotation of the polarization of light near
n atomic resonance while the polarization of off-
esonance light is unaffected. Advantages of the atomic
apor Faraday filter include its wide field of view, high
ackground rejection, and high peak transmission [1].
hese types of filters are particularly attractive, as the re-
ulting bandwidth is only several gigahertz �1 GHz=1.2
10−3 nm @ 600 nm� wide, about 400 times narrower

han 1 nm bandwidth optical interference filters commer-
ially available.

A Faraday filter of this type was first introduced by
hman in 1956 [2]. Studies using a variety of atomic spe-

ies have since been performed [1,3,4]. Specifically, filters
or Na were developed by Agnelli et al. and Chen et al.,
hile studies of the relationship between vapor tempera-

ure and cell transmission were performed by Hu et al.
nd Zhang et al. for Na and K filters, respectively [5–8].
ur work has led to a Na vapor Faraday filter deployed in

he Colorado State University Na lidar system [9], allow-
ng the measurement of mesopause region (�90 km alti-
ude) temperature and horizontal wind under sunlit con-
itions, thus permitting studies of the solar atmospheric
ides and their variability [10].

Our current interest in the Faraday filter stems from
ngoing development of a spectrometer to measure the Na
ightglow D2/D1 intensity ratio in the mesopause region.
langer et al. suggested that the varying D /D results
2 1

0740-3224/09/040659-12/$15.00 © 2
rom variation in the ratio of the concentration of atomic
xygen to the concentration of molecular oxygen �O� / �O2�
ue to competing chemical processes [11]. Measuring the
ariation between the two chemical pathways requires an
xtremely high resolution spectrometer—on the order of
he bandwidth of a Faraday filter. By using a pair of Far-
day filters, with their transmission functions indepen-
ently optimized as will be shown, we can determine
aluable information on the important atomic oxygen con-
entration.

Designing the spectrometer requires theoretical calcu-
ations of filter transmissions. Analysis of available litera-
ure showed that most publications are either missing
omplete derivations or are not easily adaptable to differ-
nt situations, thus limiting their usefulness. For ex-
mple, Yeh and Van Baak provide only a limited treat-
ent of the quantum mechanical description of atomic

tates, ignoring the hyperfine structure, while Dressler et
l. give a detailed solution, but only for weak external
agnetic fields, which is unsuitable for our high-field ap-

lication [12–14]. Yin and Shay present a theory valid for
rbitrary magnetic field for a cesium Faraday filter oper-
ting at the Cs D2 line, but their letter lacks detail to
ake it useful for others to replicate [15]. This paper not

nly details the complete calculation of Faraday filter
ransmission, which is applicable to all values of external
agnetic field, but our results are also readily adaptable

or other applications.
In Section 2, we detail the classical calculation of the

lter transmission and then relate this to the quantum-
echanical derivation of the complex susceptibility in
ection 3. Section 4 explains the theoretical results for
oth Na and K and contains tabulated current values for
ll relevant constants and coefficients. Appendix A con-
ains the calculation of transition matrix elements.
009 Optical Society of America
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. CLASSICAL THEORY: FILTER
RANSMISSION
o calculate filter transmission, we express the optical re-
ponse of the medium in terms of a complex susceptibility
±���=�±� + i�±�, where the � represents left- and right-
anded circular polarizations of the incident light. The
omplex susceptibility relates the wavenumber k and an-
ular frequency � in the dispersion relation, since

k =
�

c
��1 + �±� + i�±�� �

�

c �1 +
�±�

2
+ i

��

2 	 , �1�

here c is the speed of light. This is valid for relatively
ow vapor density, a situation suitable for most applica-
ions. The quantum mechanical derivation of �±��� is
iven in Section 3.

After the first polarizer of the Faraday filter, the ran-
omly polarized input electric field, entering from the left
f Fig. 1, is linearly polarized, which we denote as the x̂
irection. The two linear polarizations (x̂ and ŷ) can be ex-
ressed as a sum of circular polarizations written in
erms of circular polarization +̂ and −̂ coordinates:

x̂ = −
+̂ − −̂

�2
, and ŷ = i

+̂ + −̂

�2
. �2�

he input electric field, E�z , t�= 1
2 �E�z ,��e−i�t

E*�z ,��ei�t�, enters the vapor cell at z=0 and t=0. After
cell length z=L and time t, the light will have passed

hrough the vapor cell and the electric field will be

E�L,�� = −
E0

�2

exp�i��

c
�1 + 0.5�+� + 0.5i�+��L�	+̂

− exp�i��

c
�1 + 0.5�−� + 0.5i�−��L�	−̂ 
 , �3�

hich contains (for each circular polarization) an expo-
ential decay or absorption term depending on ��, and an
scillatory term depending on 1+0.5��—this is the index
f refraction.

A second, crossed polarizer will select the light polar-
zed in the ŷ direction, so the transmission coefficient will
e

F��� =
�E · ŷ�2

E0
2 =

1

4
exp�−
�

c
�+�L	 + exp�−

�

c
�−�L	

− 2 exp�−
�

c

�+� + �−�

2
L	cos��

c

�+� − �−�

2
L	
 . �4�

e can define the Faraday rotation � as the angle of po-

ig. 1. Schematic of an atomic vapor Faraday filter, consisting
f a vapor cell in an axial magnetic field between crossed
olarizers.
F

arization rotation of the output light relative to the ini-
ial linear polarization:

�F =
�

c

�+� − �−�

4
L =

�

2�
��+� − �−��L =

�

�
�	n�L, �5�

here 	n is the difference in the index of refraction of the
wo circular polarizations (i.e., circular birefringence).

. QUANTUM-MECHANICAL THEORY
. Derivation of Susceptibility
ince an atomic vapor is an ensemble of many atoms, its
tate may be represented by a density matrix: 

�n��n�pn��n� [16]. To model the interaction of the atom in
n external magnetic field, perturbation theory is used.
he Schrödinger equation for the evolution of the density
atrix of a system with Hamiltonian H0+�HI, including
damping term to model interactions such as collisions,

s

d

��t�

dt
=

1

i�
��H0,
�t��
� + ��HI�t�,
�t��
�� + � �

�

�t �
random

=
1

i�
���
�

� + ��HI�t�,
�t��
�� − �
�

��t�, �6�

here 

��t� represents an element of the density matrix
etween energy eigenstates of H0, 
, and �, where �
� is
he associated transition frequency. The damping con-
tant �
� is the natural linewidth of the transition. This
eans that �
� /�=A
� / �2��, where A
� is the Einstein

oefficient for the transition rate between the two states.
0 is the base Hamiltonian, and HI�t� is the interaction
amiltonian, with � being the strength of the perturba-

ion.
In perturbation theory, 

� can be expressed in the form

f a power series, 

��t�=�i=0
� �i

�

�i� , with each term ob-
ained from a hierarchy of equations; the first-order equa-
ion is

d

�
�1��t�

dt
=

1

i�
���
�

�

�1��t� + �HI�t�,
�0��
�� − �
�

�
�1��t�. �7�

or the electric dipole approximation, HI�t�=−er ·E�t�
− e

2�krk�Ek���e−i�t+E*k���ei�t�, with −er
�
k =−e�
�rk��� as

he electric dipole moment of an atomic electron with
harge e connecting the �
� and ��� eigenstates, and E�t�
eing the electric field of light propagating along the axis
f the Faraday filter. Defining



�
�1��t� =

1

2
�

�

�1����e−i�t + 


�

�1�*���ei�t�, �8�

he solution to Eq. (7) is



�
�1���� =

1

�
�

k=x,y

e�r
�
k 
��

�0� − 



�0�r
�

k �Ek

� − �
� + i�
�

. �9�

he expectation value of the polarization is
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P�t� = �− Ner� = − NeTr�
�1��t�r� =
1

2
�P���e−i�t + P*���e+i�t�.

�10�

To avoid confusion in notation, we decompose the vec-
ors, P���, E���, and r into Cartesian coordinates. For an
sotropic medium, both the polarization and electric field
re transverse to the propagation direction ẑ, so combin-
ng Eqs. (9) and (10) gives

Pj��� = −
Ne2

�
�


,�,k

�
��
�0� − 




�0��r�

j r
�

k Ek���

� − �
� + i�
�

. �11�

here j and k represent the components �x̂ , ŷ�.
Due to the axial symmetry of the magnetic field, the

ircular polarizations are eigenmodes of the system. We
an transform the Cartesian coordinates into circular po-
arizations using (2), and rewriting (11) in terms of the
elevant dipole moment, −er
�

± =−e�
�r±���, transition fre-
uency, �
�

± , and damping constant, �
�
± . We then have:

P±��� � �0�±
�1����E±��� → �±

�1����

= −
Ne2

�0�
�

�

�
��
�0���r±��
�2 − 




�0���r±�
��2�

� − �
�
± + i�
�

± . �12�

y assuming that in the zero-order, only the ground state
s populated, we can rewrite Eq. (12) (replacing � with g
or “ground state”):

�±
�1���� = −

Ne2

�0�
�

g


g
�0��r
g

± �2� 1

� − �
g
± + i�
g

±

−
1

� + �
g
± + i�
g

± 	 , �13�

here �
g
± =−�g


± and �
g
± =�g


± have been assumed.
Since the resonance line is narrow ��
g

± ���, and for the
ange of frequencies of interest, �+�
g

± �2�
g
± ��
g

± , Eq.
13) reduces to

�±
�1���� =

Ne2

�0�
�

g


g
�0���r±�
g�2� 2�
g

±

2�
g
± ��
g

± − � − i�
g
± �	 .

�14�

ncluding a Doppler broadening due to an atom’s random
otion with Gaussian distributed line of sight speed v,
q. (14) becomes

�±
�1���� =

N

2��0�

1

��u
�

g



g
�0��

−�

� ��p±�
g�2 exp�− v2/u2�dv

��
g
± − �v/�� − � − i��
g

± /2���
,

�15�

here u=�2kBT /m, and kB, T, and m are respectively, the
oltzmann constant, temperature, and atomic mass. We
ave also replaced e2�r
g

± �2 with ��p±�
g�2 for electric dipole
oment. The integral in Eq. (15) is the complex Faddeeva

unction [17] and can be rewritten in real and imaginary
omponents as
�±���� =
N

2��0�

1

��u
�

g



g
�0�

��
−�

� ��p±�
g�2��
g
± − �v/�� − ��exp�− v2/u2�dv

���
g
± − �v/�� − ��2 + ��
g

± /2��2�
,

�16�

�±���� =
N

2��0�

1

��u
�

g



g
�0�

��
−�

� ��p±
g��2��
g
± /2��exp�− v2/u2�dv

���
g
± − �v/�� − ��2 + ��
g

± /2��2�
. �17�

In practice, the ground state is a multiplet, and the fac-
or 
g

�0� takes into account any differences in fractional
opulation in the various ground states. From Maxwell–
oltzmann statistics, 
g

�0� is

Z = �
i=1

N

exp�−
Ei

kBT	 → 
g
�0� =

Ni

Ng
=

exp�−
Ei

kBT	
Z

,

�18�

here Ei, not to be confused with the electric field, is the
round-state energy eigenvalue from Appendix A.

. Derivation of Transmission Matrix Elements
he Hamiltonian governing the splitting of individual en-
rgy levels due to the hyperfine structure and Zeeman
plitting is [18]

H = H0 + HI

HI = HHFS + HZeeman

= AJ�I · J� +
BJ

2I�2I − 1�J�2J + 1�

�
3�I · J�2 +
3

2
�I · J� − I�I + 1�J�J + 1�


+ gJ�BB0J − gI�NB0I, �19�

here H0 and HI are the base and interaction Hamilto-
ians, respectively. The parameters AJ and BJ represent
he strength of the hyperfine magnetic dipole and electric
uadrupole interactions; vectors I and J are the nucleus
nd electron total angular momentum operators with
agnitudes I and J; �B and �N are the Bohr and nuclear
agnetons; B0 is the external magnetic field strength;

nd gJ and gI are the Lande-g factors of the atom and of
he nucleus; gJ may be related to J, orbital angular mo-
entum L, and electron spin S as [19]

gJ =
3J�J + 1� + S�S + 1� − L�L + 1�

2J�J + 1�
. �20�

In order to evaluate the transition matrix element of
he dipole moment in Eq. (15) and the energies of the
igenstates, we must first solve the eigenvalue problem of
he individual atomic states. The first step is to choose a
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et of basis states; here the unperturbed Hamiltonian in-
ludes the Coulomb attraction of the nucleus and the in-
eractions between atomic electrons. Thus the eigenstates
f H0 are �I J mI mJ� with total electronic angular mo-
entum and nuclear spin as good quantum numbers, and

hey have a degeneracy of �2J+1��2I+1�. Under the influ-
nce of HI, some of the degeneracy will be lifted. In the
imit of zero (or low) magnetic field, the coupling between
he atomic electrons and the nucleus will be dominant,
nd the eigenstates of H0+HHFS are �I J F mF�, with the
otal angular momentum of the atom (including the
ucleus) F=I+J; the energy eigenvalues will then depend
n the strengths of hyperfine interactions, AJ and BJ. In
he limit of high magnetic field, its interaction with the
tom will cause I and J to align to the external field sepa-
ately. This would allow the use of �I J mI mJ� as the
igenstates of H0+HZeeman; however, to account for hyper-
ne interactions, the eigenvalues should include the diag-
nal contribution from HHFS as an approximation. For a
olution valid at all values of magnetic field strength, an
ppropriate choice would be �I J Q mQ�, which reduces to

Table 1. Ato

Na K

A 23 39
Mass (u) 22.989768 38.9637

gI 1.478392 0.26099
bundance 100% 93.26%

AJ (GHz) BJ (GHz) gJ AJ (GH

2S1/2 0.8858130644 0 2 0.23085
2P1/2 0.0944 0 2/3 0.02777
2P3/2 0.018572 0.002723 4/3 0.00609

aValues for mass are from �22�, g are from �23�, abundance are from �22�, and

ig. 2. Energy level diagram for Na showing the 32P3/2 excited
he hyperfine splitting case with no external magnetic field. The
o the right, and the scale in GHz is to the left. (c) The exact solu
he states are broken up into four closely spaced groups due to t
f 1. The �mI mJ� eigenstate notations are listed to the right, and
I J
I J FmF� in the low or zero field limit, and to �I J mI mJ�
n the high field limit. For simplicity we choose to write
he �J I Q mQ� states as a linear superposition of
I J mI mJ� states [18]. The total Hamiltonian in this rep-
esentation is not diagonal; it must then be diagonalized
o obtain the eigenstates and eigenvalues of the system.
igure 2 shows an example of splitting in the zero field

imit (middle column) and the high field limit (right col-
mn) for the sodium 2P3/2 excited state.
The solution for energy eigenvalues and eigenvectors

nd for transition matrix elements is in Appendix A. With
he electric dipole matrix transition elements, ��p±�
g�,
valuated, Eqs. (16) and (17) may be used to calculate ��
nd ��, from which �F and F��� may be calculated via Eqs.
4) and (5).

. SAMPLE RESULTS AND DISCUSSION
computer program was written in the Interactive Data

anguage (IDL) [20], using built-in functions to calculate

ropertiesa

K

41
40.961825
0.1432543
6.73%

BJ (GHz) gJ AJ (MHz) BJ (MHz) gJ

0 2 0.1270069352 0 2
0 2/3 0.015245 0 2/3
0.002786 4/3 0.003363 0.003351 4/3

are from �24–27�.

. (a) The single fine structure state, with a degeneracy of 16. (b)
enstate notation and degeneracies (in parentheses) are indicated
r the Zeeman structure for an external magnetic field of 2000G.
erent values for �I and �B. Each Zeeman state has a degeneracy
cale in GHz is to the left.
mic P

07

z)

98601
5
3

A and B
states
�F� eig
tion fo

he diff
the s
J
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igenvalues and eigenstates, which agreed exactly with
onghand calculations. The complex Faddeeva function
as calculated using an algorithm reported by Schreier

17].
Filter transmissions and associated �F were calculated

or both D2 and D1 transitions of Na and K. Tables 1 and
give the necessary constants and coefficients. Values of

I were calculated using the method detailed in [21].
The presence of different isotopes will affect the values

f the AJ and BJ constants and gI values used in the cal-

Table 2. Linestrengtha, Transition

Ref. Na

D1

� (nm) [28] 589.7558
S=2S0 �e2a0

2� [29] 37.3
	� (GHz) [28] 0.00977

aLinestrength S0 is defined in Appendix A.

ig. 3. (a) D2 and (b) D1 transmission as a fraction of input lin
requency (GHz) for a Na vapor Faraday filter optimized for D2. (
isted in Table 3. The letters in (a) refer to the three cases descr
ulation. Na has only one stable isotope with mass num-
er A=23, so the calculation can be done exactly as de-
cribed. K has two dominant stable isotopes, A=39 and
=41, and so � for K becomes a sum over the two isotopes
eighted by their abundances, 93.26% and 6.73%, respec-

ively.
One parameter is yet to be defined: vapor density. The

ensity of the atomic vapor is a function of its tempera-
ure and pressure. In our particular vapor cell, we control
he temperature of the reservoir (see Fig. 1) containing

uum Wavelength, and Linewidth

K

D2 D1 D2

589.1582 770.108 766.701
37.3 51.6 51.6
0.00980 0.00608 0.00616

arization (solid) and Faraday rotation in units of � (dashed) vs.
(d) are the same for a D1 optimized filter. Filter parameters are
the text.
Vac
ear pol
c) and

ibed in
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olid and liquid Na (or K) to set the vapor pressure on the
oexistence curve. Another controller fixes the tempera-
ure of the main body of the cell, which is the vapor tem-
erature. From the ideal gas law the vapor density is pro-
ortional to this vapor pressure and inversely
roportional to the temperature of the vapor. Data for va-
or pressure as a function of saturated vapor temperature
s given for both solid or liquid Na and K by Honig and
ramer [30], and we derived an equation using a curve-fit
ethod similar to that described in [30]. For Na, the va-

or pressure equation is

log10�PNa� = 71.899 − 9217.2�Tres�−1 + 40693000�Tres�−3

+ 0.0061264�Tres� − 9.6625 ln�Tres�, �21�

nd for K

log10�PK� = 69.53 − 10486�Tres�−1 + 1.8658 � 108�Tres�−3

+ 0.0027286�Tres� − 8.5732 ln�Tres�, �22�

here Tres is the temperature at the solid or liquid reser-
oir and P is the pressure in Torr.
Figures 3 through 6 show results calculated from the
omputer program, with the filter parameters listed in
able 3. Notice that the filter temperatures are chosen to
espectively optimize the D2 transition in parts (a) and (b)
f Figs. 3 and 4 and to optimize the D1 transition in parts
c) and (d) of Figs. 3 and 4. When mesospheric sodium
ightglow is sent through the two Na Faraday filters with
ell and reservoir temperature settings optimized to mini-
ize error from photon noise, the detected signals may be

rocessed to deduce Na D2/D1 ratio, thereby the ratio be-
ween the concentration of atomic oxygen to the concen-
ration of molecular oxygen �O� / �O2�.

In the curves for �� and ��, shown in Figs. 5 and 6,
here are two groups of curves. Each set of curves is a
ummation of the curves for the various Zeeman split
ransitions with 	mI= ±1, which is the selection rule for
he circular +̂ and −̂ polarizations defined in Section 2.
he central value of each group, indicated by the peak in

he curve for �� or the zero crossing point of �� is labeled
s �0

− for the curves on the left and �0
+ for the curves on the

ight, and can be thought of as a resonance frequency for
Fig. 4. Same as Fig. 3, except for K. Filter parameters are listed in Table 3.
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he circular polarization. This allows � to be written as �±
s was done in Eqs. (16) and (17) of Section 2.
By comparing the figures with the relevant equations,

e can gain physical insight to what occurs in a Faraday
lter. To facilitate this appreciation, we further consider
he transmission function near three specific frequencies:
, at line center; B, off resonance; and C, at the resonance
t either �0

+ or �0
− [see Fig. 3(a)]. For cases A and B, there

s no absorption and the exponential factors in Eq. (4) are
ll unity, and the transmission reduces to F���= 1

2 �1
cos�2�F��=sin2�F. For case A the �F should be nonzero,
ince �+� and �−� are of opposite sign, and F��� varies peri-
dically between 0 and near 1 as vapor density varies, so
or fixed B0 and cell length, we can easily adjust the vapor
ensity to vary transmission at the line center. For case
, �F=0, since far from resonance both �+� and �−� have the
ame value and F���=0. For case C, at �0

+ for example, �+�
s zero. While �−� is nonzero, �+� is large enough to render
ig. 5. �� and �� curves for (a) Na D2 and (b) D1 lines split by the Zeeman effect due to the 1850 Gauss external magnetic field. Solid

is �� for �+, and black dashed curve is �� for �+.
Fig. 6. Same as Fig. 5, only for K.
Table 3. Filter Parameters used to Generate Figs.
2–5, and �0

+ and �0
− Transition Frequencies

Na K

L (cm) 4

B0 (G) 1850 700

D1
optimized

D2
optimized

D1
optimized

D2
optimized

Tres (°C) 180 164 94 76
Tcell (°C) 186 169 104 79

D1�0
+ (GHz) 3.6 1.3

D1�0
− (GHz) −3.6 −1.3

D2�0
+ (GHz) 2.5 1.0

D2�0
− (GHz) −2.5 −1.0
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he associated exponential factors zero. In this case, one
ircular polarization is totally absorbed, and the electric
eld of the other polarization is reduced by the second po-

arizer by a factor of 1
�2 . Therefore, F����0.25 at either �0

+

r �0
−. In practice, the measured transmission can be

caled to 1
4 at those frequencies to avoid the more involved

ormalization measurement described in [6].

. CONCLUSIONS
e have presented a complete theory of the atomic vapor
araday filter. In addition to upper atmospheric lidar, the
esults and associated computer program can now be
sed for various applications, including our studies of the
hysics and chemistry of the mesospause region. Other
ses abound; Faraday filters can also be used to investi-
ate Na and K atoms in the photosphere of the sun [5]

nd to investigate lower atmosphere winds with a sodium =

T
s

idar [31], among other applications. The sample results
resented help to further illustrate nuances in the theory.
ur computer program can be made available on request.
he approach in this paper is readily adaptable to other
lkali atoms, which have the same electronic structure
ut different nuclear spin. For example, cesium has I
7/2 and, therefore, the degeneracy is doubled, but the
lectronic dipole transition probabilities, Eqs. (A5) and
A6) in Appendix A, are the same as Na and K.

PPENDIX A: TRANSMISSION MATRIX
LEMENT CALCULATIONS
. Details of the Derivation of Transition Matrix
lements
he �I J mI mJ� base states are now abbreviated �mJ mI�.
s an example, the states 2S1/2 and 2P1/2 have J=1/2 (I

3/2 for Na and K). The set of 8 �mI mJ� eigenstates is

�3

2

1

2�
1

�3

2

− 1

2 �
2

�1

2

1

2�
3

�1

2

− 1

2 �
4

�− 1

2

1

2�
5

�− 1

2

− 1

2 �
6

�− 3

2

1

2�
7

�− 3

2

− 1

2 �
8 
 , �A1�
nd the numbers above the kets will be used as a simpler
otation. We now proceed to solve the eigenvalue problem

or the total Hamiltonian.
Raising and lowering operators I± and J± allows HI to

e written as a sum of three terms, according to the power
f raising or lowering operators:

H±0 = gJ�BB0Jz − gI�IB0Iz + AJIzJz +
BJ

2I�I − 1�J�2J − 1�

�
3�IzJzIzJz +
1

4
�I+J−I−J+ + I−J+I+J−�	

+
3

2
IzJz − I�I + 1�J�J + 1�
 ,

H±1 =
AJ

2
�I+J− + I−J+� +

BJ

2I�I − 1�J�2J − 1�

3

2

�
IzJz�I+J− + I−J+� + �I+J− + I−J+�IzJz

+
1

2
�I+J− + I−J+�
 ,

H±2 =
BJ

2I�I − 1�J�2J − 1�

3

4
�I+J−I+J− + I−J+I−J+�. �A2�

ontinuing with the 2S1/2 (or 2P1/2) example, since there
re 8 states, the Hamiltonian will be an 8�8 matrix in
lock-diagonal form with the subscripts using the nota-
ion of Eq. (A1):
HHFS =�
H1,1 0

H2,2 H2,3

H3,2 H3,3

H4,4 H4,5

H5,4 H5,5

H6,6 H6,7

H7,6 H7,7

0 H8.8

� .

�A3�

he values for the Hamiltonian matrix elements for these
tates of Na/K are listed here:

H1,1 =
3

4
AJ +

1

2
gJ�BB0 −

3

2
gI�nB0,

H6,6 =
1

4
AJ −

1

2
gJ�BB0 +

1

2
gI�nB0,

H2,2 = −
3

4
AJ −

1

2
gJ�BB0 −

3

2
gI�nB0,

H7,7 = −
3

4
AJ +

1

2
gJ�BB0 +

3

2
gI�nB0,

H3,3 =
1

4
AJ +

1

2
gJ�BB0 −

1

2
gI�nB0,
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H8,8 =
3

4
AJ −

1

2
gJ�BB0 +

3

2
gI�nB0,

H4,4 = −
1

4
AJ −

1

2
gJ�BB0 −

1

2
gI�nB0,

H2,3 = H3,2 = H6,7 = H7,6 =
�3

2
AJ,

H5,5 = −
1

4
AJ +

1

2
gJ�BB0 +

1

2
gI�nB0,

H4,5 = H5,4 = AJ. �A4�

The blocks in the Hamiltonian matrices, at most 2�2,
an be solved independently and easily, yielding energy
igenvalues E and eigenstates with their associated coef-
cients. The 2P3/2 state can be solved similarly; however,

t is a 16�16 block-diagonal matrix with a maximum
lock size of 4�4.
With the energy levels and eigenstate coefficients de-

ermined, we can calculate the transition frequencies and
robabilities of the allowed transitions. The transitions of
nterest are electric dipole with selection rules 	mI=0
nd 	mJ= ±1 for absorption or emission of a circularly po-
arized photon in the filter. The transition probability is
iven by the square of the transition matrix element

�mI�mJ� �p±�mImJ��2 where primed and unprimed represent

Table 4. D1 Allowed Transi

2S1/2
2P1/2

�3/2,1/2� b2−�3/2,−1/2�+b

b3−�3/2,−1/2�+b

a2−�3/2,−1/2�+a2+�1/2,1/2� �3/2,1/2�
b4−�1/2,−1/2�+b

b5−�1/2,−1/2�+b

a3−�3/2,−1/2�+a3+�1/2,1/2� �3/2,1/2�
b4−�1/2,−1/2�+b

b5−�1/2,−1/2�+b

a4−�1/2,−1/2�+a4+�−1/2,1/2� b2−�3/2,−1/2�+b
b3−�3/2,−1/2�+b
b6−�−1/2,−1/2�+

b7−�−1/2,−1/2�+

a5−�1/2,−1/2�+a5+�−1/2,1/2� b2−�3/2,−1/2�+b
b3−�3/2,−1/2�+b
b6−�−1/2,−1/2�+

b7−�−1/2,−1/2�+

6−�−1/2,−1/2�+a6+�−3/2,1/2� b4−�1/2,−1/2�+b
b5−�1/2,−1/2�+b
�−3/2,−1/2�

7−�−1/2,−1/2�+a7+�−3/2,1/2� b4−�1/2,−1/2�+b
b5−�1/2,−1/2�+b
�−3/2,−1/2�

�−3/2,−1/2� b6−�−1/2,−1/2�+
b7−�−1/2,−1/2�+
xcited and ground states. This may be written as product
f 3-j symbols and the reduced matrix element �I�J��p�IJ�
32]. This can be further reduced to the reduced matrix el-
ment between states in the “basic” model of the atom us-
ng 6-j symbols [33]. This basic-model reduced matrix el-
ment, ��l��p�l��2, is known as the line strength, S0, of the
ransition; it is the total intensity of the line and is experi-
entally determined and tabulated in a National Bureau

f Standards (NBS) publication [29] and reproduced in
able 2. The total transition probability of each Zeeman
ransition is given by

��mI�mJ� �p±�mImJ��2 = �a�2�b�2�2J� + 1��2J + 1�

�� J� 1 J

− mJ� ±1 mJ
	2
l� J� S

J l 1
2

S0

= F1F2�2J� + 1��2J + 1�
l� J� S

J l 1
2

S0,

�A5�

here a and b are the expansion coefficients of the appro-
riate eigenstate for the ground and excited states as de-
ned above. The 3-j symbol is

� J� 1 J

− mJ� ±1 mJ
	

nd

F1 Value and Polarization

F1 Polarization

1/2� �b2−�2 −̂
1 /2� �b3−�2 −̂

�a2−�2 +̂
,1 /2� �a2+�2�b4−�2 −̂
,1 /2� �a2+�2�b5−�2 −̂

�a3−�2 +̂
,1 /2� �a3+�2�b4−�2 −̂
,1 /2� �a3+�2�b5−�2 −̂
1 /2� �a4−�2�b2+�2 +̂
1 /2� �a4−�2�b3+�2 +̂
/2 ,1/2� �a4+�2�b6−�2 −̂
/2 ,1/2� �a4+�2�b7−�2 −̂
1 /2� �a5−�2�b2+�2 +̂
1 /2� �a5−�2�b3+�2 +̂
/2 ,1/2� �a5+�2�b6−�2 −̂
/2 ,1/2� �a5+�2�b7−�2 −̂
,1 /2� �a6−�2�b4+�2 +̂
,1 /2� �a6−�2�b5+�2 +̂

�a6+�2 −̂
,1 /2� �a7−�2�b4+�2 +̂
,1 /2� �a7−�2�b5+�2 +̂

�a7+�2 −̂
/2 ,1/2� �b6+�2 +̂
/2 ,1/2� �b7+�2 +̂
tion

2+�1/2,

3+�1/2,

4+�−1/2

5+�−1/2

4+�−1/2

5+�−1/2

2+�1/2,

3+�1/2,
b6+�−3

b7+�−3

2+�1/2,

3+�1/2,
b6+�−3

b7+�−3

4+�−1/2

5+�−1/2

4+�−1/2

5+�−1/2

b6+�−3
b7+�−3



a

a
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Table 5. D2 Allowed Transitions F1 and F2 Values and Polarization

2S1/2
2P3/2 F1F2 Pol.

�3/2,1/2� �3/2,3/2� 1/4 +̂
b4,−0.5�3/2,−1/2�+b4,0.5�1/2,1/2�+b4,1.5�−1/2,3/2� �b4,−0.5�2 /12 −̂
b5,−0.5�3/2,−1/2�+b5,0.5�1/2,1/2�+b5,1.5�−1/2,3/2� �b5,−0.5�2 /12 −̂
b6,−0.5�3/2,−1/2�+b6,0.5�1/2,1/2�+b6,1.5�−1/2,3/2� �b6,−0.5�2 /12 −̂

a2−�3/2,−1/2�+a2+�1/2,1/2� b2,0.5�3/2,1/2�+b2,1.5�1/2,3/2� �a2−�2�b2,0.5�2 /12+ �a2+�2�b2,1.5�2 /4 +̂
b3,0.5�3/2,1/2�+b3,1.5�1/2,3/2� �a2−�2�b3,0.5�2 /12+ �a2+�2�b3,1.5�2 /4 +̂
b7,−1.5�3/2,−3/2�+b7,−0.5�1/2,−1/2� �a2−�2�b7,−1.5�2 /4+ �a2+�2�b7,−0.5�2 /12 −̂
+b7,0.5�−1/2,1/2�+b7,1.5�−3/2,3/2�
b8,−1.5�3/2,−3/2�+b8,−0.5�1/2,−1/2� �a2−�2�b8,−1.5�2 /4+ �a2+�2�b8,−0.5�2 /12 −̂
+b8,0.5�−1/2,1/2�+b8,1.5�−3/2,3/2�
b9,−1.5�3/2,−3/2�+b9,−0.5�1/2,−1/2� �a2−�2�b9,−1.5�2 /4+ �a2+�2�b9,−0.5�2 /12 −̂
+b9,0.5�−1/2,1/2�+b9,1.5�−3/2,3/2�
b10,−1.5�3/2,−3/2�+b10,−0.5�1/2,−1/2�+ �a2−�2�b10,−1.5�2 /4+ �a2+�2�b10,−0.5�2 /12 −̂
b10,0.5�−1/2,1/2�+b10,1.5�−3/2,3/2�

a3−�3/2,−1/2�+a3+�1/2,1/2� b2,0.5�3/2,1/2�+b2,1.5�1/2,3/2� �a3−�2�b2,0.5�2 /12+ �a3+�2�b2,1.5�2 /4 +̂
b3,0.5�3/2,1/2�+b3,1.5�1/2,3/2� �a3−�2�b3,0.5�2 /12+ �a3+�2�b3,1.5�2 /4 +̂
b7,−1.5�3/2,−3/2�+b7,−0.5�1/2,−1/2�+ �a3−�2�b7,−1.5�2 /4+ �a3+�2�b7,−0.5�2 /12 −̂
b7,0.5�−1/2,1/2�+b7,1.5�−3/2,3/2�
b8,−1.5�3/2,−3/2�+b8,−0.5�1/2,−1/2�+ �a3−�2�b8,−1.5�2 /4+ �a3+�2�b8,−0.5�2 /12 −̂
b8,0.5�−1/2,1/2�+b8,−1.5�−3/2,3/2�
b9,−1.5�3/2,−3/2�+b9,−0.5�1/2,−1/2�+ �a3−�2�b10,−1.5�2 /4+ �a3+�2�b10,−0.5�2 /12 −̂
b9,0.5�−1/2,1/2�+b9,1.5�−3/2,3/2�
b10,−1.5�3/2,−3/2�+b10,−0.5�1/2,−1/2�+ �a3−�2�b10,−1.5�2 /4+ �a3+�2�b10,−0.5�2 /12 −̂
b10,0.5�−1/2,1/2�+b10,1.5�−3/2,3/2�

a4−�1/2,−1/2�+a4+�−1/2,1/2� b4,−0.5�3/2,−1/2�+b4,0.5�1/2,1/2�+b4,1.5�−1/2,3/2� �a4−�2�b4,0.5�2 /12+ �a4+�2�b4,1.5�2 /4 +̂
b5,−0.5�3/2,−1/2�+b5,0.5�1/2,1/2�+b5,1.5�−1/2,3/2� �a4−�2�b5,0.5�2 /12+ �a4+�2�b5,1.5�2 /4 +̂
b6,−0.5�3/2,−1/2�+b6,0.5�1/2,1/2�+b6,1.5�−1/2,3/2� �a4−�2�b6,0.5�2 /12+ �a4+�2�b6,1.5�2 /4 +̂
b11,−1.5�1/2,−3/2�+b11,−0.5�−1/2,−1/2�+ �a4−�2�b11,−1.5�2 /4+ �a4+�2�b11,−0.5�2 /12 −̂
b11,0.5�−3/2,1/2�
b12,−1.5�1/2,−3/2�+b12,−0.5�−1/2,−1/2�+ �a4−�2�b12,−1.5�2 /4+ �a4+�2�b12,−0.5�2 /12 −̂
b12,0.5�−3/2,1/2�
b13,−1.5�1/2,−3/2�+b13,−0.5�−1/2,−1/2�+ �a4−�2�b13,−1.5�2 /4+ �a4+�2�b13,−0.5�2 /12 −̂
b13,0.5�−3/2,1/2�

a5−�1/2,−1/2�+a5+�−1/2,1/2� b4,−0.5�3/2,−1/2�+b4,0.5�1/2,1/2�+b4,1.5�−1/2,3/2� �a5−�2�b4,0.5�2 /12+ �a5+�2�b4,1.5�2 /4 +̂
b5,−0.5�3/2,−1/2�+b5,0.5�1/2,1/2�+b5,1.5�−1/2,3/2� �a5−�2�b5,0.5�2 /12+ �a5+�2�b5,1.5�2 /4 +̂
b6,−0.5�3/2,−1/2�+b6,0.5�1/2,1/2�+b6,1.5�−1/2,3/2� �a5−�2�b6,0.5�2 /12+ �a5+�2�b6,1.5�2 /4 +̂
b11,−1.5�1/2,−3/2�+b11,−0.5�−1/2,−1/2�+ �a5−�2�b11,−1.5�2 /4+ �a5+�2�b11,−0.5�2 /12 −̂
b11,0.5�−3/2,1/2�
b12,−1.5�1/2,−3/2�+b12,−0.5�−1/2,−1/2�+ �a5−�2�b12,−1.5�2 /4+ �a5+�2�b12,−0.5�2 /12 −̂
b12,0.5�−3/2,1/2�
b13,−1.5�1/2,−3/2�+b13,−0.5�−1/2,−1/2�+ �a5−�2�b13,−1.5�2 /4+ �a5+�2�b13,−0.5�2 /12 −̂
b13,0.5�−3/2,1/2�

6−�−1/2,−1/2�+a6+�−3/2,1/2� b7,−1.5�3/2,−3/2�+b7,−0.5�1/2,−1/2�+ �a6−�2�b7,0.5�2 /12+ �a6+�2�b7,1.5�2 /4 +̂
b7,0.5�−1/2,1/2�+b7,1.5�−3/2,3/2�
b8,−1.5�3/2,−3/2�+b8,−0.5�1/2,−1/2�+ �a6−�2�b8,0.5�2 /12+ �a6+�2�b8,1.5�2 /4 +̂
b8,0.5�−1/2,1/2�+b8,1.5�−3/2,3/2�
b9,−1.5�3/2,−3/2�+b9,−0.5�1/2,−1/2�+ �a6−�2�b9,0.5�2 /12+ �a6+�2�b9,1.5�2 /4 +̂
b9,0.5�−1/2,1/2�+b9,1.5�−3/2,3/2�
b10,−1.5�3/2,−3/2�+b10,−0.5�1/2,−1/2�+ �a6−�2�b10,0.5�2 /12+ �a6+�2�b10,1.5�2 /4 +̂
b10,0.5�−1/2,1/2�+b10,1.5�−3/2,3/2�
b14,−1.5�−1/2,−3/2�+b14,−0.5�−3/2,−1/2� �a6−�2�b14,−1.5�2 /4+ �a6+�2�b14,−0.5�2 /12 −̂
b15,−1.5�−1/2,−3/2�+b15,−0.5�−3/2,−1/2� �a6−�2�b15,−1.5�2 /4+ �a6+�2�b15,−0.5�2 /12 −̂

7−�−1/2,−1/2�+a7+�−3/2,1/2� b7,−1.5�3/2,−3/2�+b7,−0.5�1/2,−1/2�+ �a7−�2�b7,0.5�2 /12+ �a7+�2�b7,1.5�2 /4 +̂
b7,0.5�−1/2,1/2�+b7,1.5�−3/2,3/2�
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s the 6-j symbol; their values are from Tables 5 and 6 in
dmonds [34]. F1 and F2 are defined as

F1 = �a�2�b�2,

F2 = � J� 1 J

− mJ� ±1 mJ
	2

. �A6�

hese probabilities are tabulated for the Na and K
eeman-split hyperfine transitions for each circular polar-

zation component of the 2P1/2→ 2S1/2 �D1� and 2P3/2
2S1/2 �D2� transitions, as discussed below. Note that

ith the choice of the �I ,J ,mI ,mJ� base states, the elec-
ronic dipole moments of the transitions are independent
rom the nuclear spin of the system.

. D1 Transition Probabilities of Allowed Transitions
or this transition J�=1/2, J=1/2, l�=1 (P-state), l=0 (S-
tate), and S=1/2. By inserting these values into Eq.
A5), the transition probability is found to be

��mI�mJ� �p±�mImJ��2 = F1F2

2

3
S0, �A7�

ith F2=1/3 from Eq. (A6). Table 4 shows the values of F1
f the allowed transitions, as well as for which �± circular
olarization. The subscripts on the a and b coefficients
epresent which state and mJ value they correspond to.

. D2 Transition Probabilities of Allowed
ransitions
or this transition J�=3/2, J=1/2, l�=1 (P-state), l=0 (S-
tate), and S=1/2. By inserting these values into Eq.
A5), the transition probability is found to be

Table 5.

2S1/2
2P3/2

b8,−1.5�3/2,−3/2�+b8,−0.5�1/2,
b8,0.5�−1/2,1/2�+b8,1.5�−3/2,
b9,−1.5�3/2,−3/2�+b9,−0.5�1/2,
b9,0.5�−1/2,1/2�+b9,1.5�−3/2,
b10,−1.5�3/2,−3/2�+b10,−0.5�1/2
b10,0.5�−1/2,1/2�+b10,1.5�−3/2
b14,−1.5�−1/2,−3/2�+b14,−0.5�−

b15,−1.5�−1/2,−3/2�+b15,−0.5�−

�−3/2,−1/2� b11,−1.5�1/2,−3/2�+b11,−0.5�−1
b11,0.5�−3/2,1/2�
b12,−1.5�1/2,−3/2�+b12,−0.5�−1
b12,0.5�−3/2,1/2�
b13,−1.5�1/2,−3/2�+b13,−0.5�−1
b13,0.5�−3/2,1/2�
�−3/2,−3/2�
��mI�mJ� �p±�mImJ��2 = F1F2

4

3
S0, �A8�

here F2=1/12 or 1/4, depending on whether �mJ’�=1/2,
r 3/2, respectively, as indicated in Table 5. Table 5 shows
he values of F1F2 of the allowed transitions, as well as
he �± circular polarization. The subscripts on the a and b
oefficients represent which state and mJ value they cor-
espond to.
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