167 research outputs found
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions
Several stochastic simulation algorithms (SSAs) have been recently proposed
for modelling reaction-diffusion processes in cellular and molecular biology.
In this paper, two commonly used SSAs are studied. The first SSA is an
on-lattice model described by the reaction-diffusion master equation. The
second SSA is an off-lattice model based on the simulation of Brownian motion
of individual molecules and their reactive collisions. In both cases, it is
shown that the commonly used implementation of bimolecular reactions (i.e. the
reactions of the form A + B -> C, or A + A -> C) might lead to incorrect
results. Improvements of both SSAs are suggested which overcome the
difficulties highlighted. In particular, a formula is presented for the
smallest possible compartment size (lattice spacing) which can be correctly
implemented in the first model. This implementation uses a new formula for the
rate of bimolecular reactions per compartment (lattice site).Comment: 33 pages, submitted to Physical Biolog
Caregiver perceptions of children who have complex communication needs following a home-based intervention using augmentative and alternative communication in rural Kenya: an intervention note:Home-based intervention using AAC in rural Kenya
A high level of unmet communication need exists amongst children with developmental disabilities in sub-Saharan Africa. This study investigated preliminary evidence of the impact associated with a home-based, caregiver-implemented intervention employing AAC methods, with nine children in rural Kenya who have complex communication needs. The intervention used mainly locally-sourced low-tech materials, and was designed to make use of the child's strengths and the caregiver's natural expertise. A pretest-posttest design was used in the study. Data were gathered using an adapted version of the Communication Profile, which was based on the International Classification of Functioning, Disability, and Health (ICF) framework. The non-parametric Wilcoxon signed-rank test was applied to data from the first two sections of the Communication Profile-Adapted. Qualitative analysis was conducted on the final section. The data provided evidence of statistically significant positive changes in caregiver perceptions of communication at the levels of Body Structure and Function, and Activities for Communication. Also, analysis of the Participation for Communication section revealed some expansion to the children's social activities. The potential impact of the home-based intervention would benefit from investigation on a larger scale. Limitations of the study are discussed
Solving the chemical master equation using sliding windows
<p>Abstract</p> <p>Background</p> <p>The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species.</p> <p>Results</p> <p>In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy.</p> <p>Conclusions</p> <p>The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori.</p
Multicenter phase II study of plitidepsin in patients with relapsed/refractory non-Hodgkin's lymphoma
This phase II clinical trial evaluated the efficacy, safety and pharmacokinetics of plitidepsin 3.2 mg/m2 administered as a 1-hour intravenous infusion weekly on days 1, 8 and 15 every 4 weeks in 67 adult patients with relapsed/refractory aggressive non-Hodgkin's lymphoma. Patients were divided into two cohorts: those with non-cutaneous peripheral T-cell lymphoma (n=34) and those with other lymphomas (n=33). Efficacy was evaluated using the International Working Group criteria (1999). Of the 29 evaluable patients with non-cutaneous peripheral T-cell lymphoma, six had a response (overall response rate 20.7%; 95% confidence interval, 8.0%-39.7%), including two complete responses and four partial responses. No responses occurred in the 30 evaluable patients with other lymphomas (including 27 B-cell lymphomas). The most common plitidepsin-related adverse events were nausea, fatigue and myalgia (grade 3 in <10% of cases). Severe laboratory abnormalities (lymphopenia, anemia, thrombo- cytopenia, and increased levels of transaminase and creatine phosphokinase) were transient and easily managed by plitidepsin dose adjustments. The pharmacokinetic profile did not differ from that previously reported in patients with solid tumors. In conclusion, plitidepsin monotherapy has clinical activity in relapsed/refractory T-cell lymphomas. Combinations of plitidepsin with other chemotherapeutic drugs deserve further evaluation in patients with non-cutaneous peripheral T-cell lymphoma. (clinicaltrials.gov identifier: NCT00884286)
ALMA Band 5 receiver cartridge. Design, performance, and commissioning
We describe the design, performance, and commissioning results for the new ALMA Band 5 receiver channel, 163–211 GHz, which is in the final stage of full deployment and expected to be available for observations in 2018. This manuscript provides the description of the new ALMA Band 5 receiver cartridge and serves as a reference for observers using the ALMA Band 5 receiver for observations. At the time of writing this paper, the ALMA Band 5 Production Consortium consisting of NOVA Instrumentation group, based in Groningen, NL, and GARD in Sweden have produced and delivered to ALMA Observatory over 60 receiver cartridges. All 60 cartridges fulfil the new more stringent specifications for Band 5 and demonstrate excellent noise temperatures, typically below 45 K single sideband (SSB) at 4 K detector physical temperature and below 35 K SSB at 3.5 K (typical for operation at the ALMA Frontend), providing the average sideband rejection better than 15 dB, and the integrated cross-polarization level better than –25 dB. The 70 warm cartridge assemblies, hosting Band 5 local oscillator and DC bias electronics, have been produced and delivered to ALMA by NRAO. The commissioning results confirm the excellent performance of the receivers
- …