3,685 research outputs found
Stochastic evaluation of sewer inlet capacity on urban pluvial flooding
In this paper we present an innovative methodology to stochastically assess the impact of sewer inlet conditions on urban pluvial flooding. The results showed that sewer inlet capacity can have a large impact on the occurrence of urban pluvial flooding. The methodology is a useful tool for dealing with uncertainties in sewer inlet operational conditions and contribute to comprehensive assessment of urban pluvial risk assessment
On the use of semi-distributed and fully-distributed urban stormwater models
Urban stormwater models comprise four main components: rainfall, rainfall-runoff, overland flow and sewer flow modules. They can be considered semi-distributed (SD) or fully distributed (FD) according to the rainfall-runoff module definition. SD models are based on sub-catchments units through which rainfall is applied to the model and at which runoff volumes are estimated. In FD models, the runoff volumes are estimated and applied directly on every element of a twodimensional (2D) model of the surface. This poster presents a comparison of SD and FD models based on two case studies: Zona Central catchment at Coimbra, Portugal, and Cranbrook catchment at London, UK. SD and FD modelling results are compared against water depth and flow records in sewers, and photographic records of a flood event. In general, FD models are theoretically more realistic and physically-based, but the results of this study suggest that the implementation of these models requires higher resolution (more detailed) elevation, land use and sewer network data than is normally used in the implementation of SD models. Failing to use higher resolution data for the implementation of FD models could result in poor-performing models. In cases when high resolution data are not available, the use of SD models could be a better choice
How Observations of Circumstellar Disk Asymmetries Can Reveal Hidden Planets: Pericenter Glow and its Application to the HR 4796 Disk
Recent images of the disks of dust around the young stars HR 4796A and
Fomalhaut show, in each case, a double-lobed feature that may be asymmetric
(one lobe may be brighter than the other). A symmetric double-lobed structure
is that expected from a disk of dust with a central hole that is observed
nearly edge-on (i.e., close to the plane of the disk). This paper shows how the
gravitational influence of a second body in the system with an eccentric orbit
would cause a brightness asymmetry in such a disk by imposing a "forced
eccentricity" on the orbits of the constituent dust particles, thus shifting
the center of symmetry of the disk away from the star and causing the dust near
the forced pericenter of the perturbed disk to glow. Dynamic modeling of the HR
4796 disk shows that its 5% brightness asymmetry could be the result of a
forced eccentricity as small as 0.02 imposed on the disk by either the binary
companion HR 4796B, or by an unseen planet close to the inner edge of the disk.
Since it is likely that a forced eccentricity of 0.01 or higher would be
imposed on a disk in a system in which there are planets, but no binary
companion, the corresponding asymmetry in the disk's structure could serve as a
sensitive indicator of these planets that might otherwise remain undetected.Comment: 61 pages, 10 figures, accepted for publication in the Astrophysical
Journal (scheduled for January 10, 2000
Triply green polyaniline: UV irradiation-induced synthesis of highly porous PANI/TiO2 composite and its application in dye removal
An environmentally benign procedure for the preparation of polyaniline/TiO2 composites is presented. The UV irradiation-induced synthesis leads to materials with good crystallinity and tailored morphology, showing promising sorption and recycle properties in dye removal tests. A reaction mechanism is proposed on the basis of LC-MS and FT-IR investigations
Photocatalytic and oxidative synthetic pathways for highly efficient PANI-TIO2 nanocomposites as organic and inorganic pollutant sorbents
Polyaniline (PANI)-materials have recently been proposed for environmental remediation applications thanks to PANI stability and sorption properties. As an alternative to conventional PANI oxidative syntheses, which involve toxic carcinogenic compounds, an eco-friendly procedure was here adopted starting from benign reactants (aniline-dimer and H2O2) and initiated by ultraviolet (UV)-irradiated TiO2. To unlock the full potential of this procedure, we investigated the roles of TiO2 and H2O2 in the nanocomposites synthesis, with the aim of tailoring the properties of the final material to the desired application. The nanocomposites prepared by varying the TiO2:H2O2:aniline-dimer molar ratios were characterized for their thermal, optical, morphological, structural and surface properties. The reaction mechanism was investigated via mass analyses and X-ray photoelectron spectroscopy. The nanocomposites were tested on both methyl orange and hexavalent chromium removal. A fast dye-sorption was achieved also in the presence of interferents and the recovery of the dye was obtained upon eco-friendly conditions. An efficient Cr(VI) abatement was obtained also after consecutive tests and without any regeneration treatment. The fine understanding of the reaction mechanism allowed us to interpret the pollutant-removal performances of the different materials, leading to tailored nanocomposites in terms of maximum sorption and reduction capability upon consecutive tests even in simulated drinking water
Polyaniline/TiO2 composites: green photocatalysic synthesis and application in wastewater remediation
In recent years, polyaniline (PANI) composites and nanocomposites with metal and metal-oxide materials have received growing attention for electrochemical and photoelectrochemical applications (Gu 2013). Among them, PANI/TiO2 composites are probably the most interesting systems due to synergistic effects between the conductive polymer and the oxide photocatalyst in terms of photogenerated charge separation and photocatalytic efficiency (Bae 2011). Moreover, polyaniline has been reported to possess favourable sorption properties, which can be exploited for pollutant remediation (Alcaraz-Espinoza 2015, Janaki 2012). PANI/TiO2 composites are thus promising candidates for wastewater treatment combining different pollutant remediation approaches. Polyaniline is classically synthesised via oxidative polymerization (Tran 2011), which involves noxious reagents (aniline and peroxydisulfates) and leads to toxic and carcinogenic byproducts (such as benzidine and trans-azobenzidine). In recent years, greener alternatives have been reported, such as a synthetic process starting from aniline dimer ((4-aminophenil)aniline) and using Fe3+ as catalyst and H2O2 as oxidant (Della Pina 2018). Unfortunately, this alternative procedure does not offer any control over the polymer morphology, leading to compact materials with low surface area and, as a consequence, poor dye-sorption capability. Very recently, we proposed a new photocatalytically induced green synthesis leading to stable polyaniline/TiO2 composites with porous morphology, wide surface area, high crystallinity and, most important, excellent dye removal performance and reusability (Cionti 2018). The reaction is carried out in two steps: at first, the aniline dimer is dissolved in a HCl aqueous solution and TiO2 is added while starting UV irradiation. In the second step, H2O2 is added in the dark, leading to the final product. In this work, we shed light on the photocatalytic nature of the synthetic mechanism, highlighting the different roles of TiO2 and of H2O2 on the composite structural and morphological features as well as on the composite performance for pollutant abatement. The reaction mechanism was investigated by a combination of spectrometric techniques, radical scavenger tests, and surface characterizations (Fig.1). By sampling the reaction mixture at different irradiation times, we demonstrated that under UV irradiation the growth of the oligomers occurs at the TiO2 particle surfaces. The same experiment carried out without UV irradiation showed the intrinsic photocatalytic nature of the process: in the dark, only short oligomers without appropriate chain conjugation were produced. However, even after prolonged UV irradiation, the final green product could be obtained only upon addition of H2O2, showing that, while oligomer formation is initiated by radicals produced by TiO2 photocatalysis, small amounts of an oxidant (H2O2) are still needed for the polymer chain growth. The role of the H2O2 amount proved to be especially crucial with respect to the composite properties. Increasing the H2O2 amount together with that of TiO2 led to composites with low surface area and reduced dye removal capability (Fig.2 a) due to a faster polymerization step. On the other hand, when only the photocatalyst amount was increased, neither the product morphology, nor its dye-removal ability were affected. This enables to increase the TiO2 content within the composite with the aim of enhancing its photocatalytic performance. In this respect, the composite stability was tested in water under prolonged UV irradiation, showing that the material optical, structural and morphological properties remained unchanged. The composite was tested towards the removal of anionic azo dyes in aqueous solution, evaluating the effect of the matrix composition and the composite reusability (Fig.2 b), showing promising results
Peripapillary Retinal Nerve Fiber Layer Thickness and Peripheral Microcirculation in Raynaud’s Disease
Purpose: Normal-tension glaucoma has been associated with systemic vascular diseases such as peripheral vasospasm. This study aims to evaluate the influence of peripheral vasospasm on the thickness of the retinal nerve fiber layer (RNFL) in Raynaud's disease (RD), and the correlation between global RNFL and peripheral microcirculation features in RD patients. Methods: Observational cross-sectional study of 18 patients (35 eyes) with a diagnosis of RD followed in our clinic, and 20 healthy controls (39 eyes). RNFL parameters were obtained using spectral domain optical coherence tomography (SD-OCT Spectralis®, Heidelberg). Global and sectorial peripapillary RNFL thickness were registered. Age, gender, refractive error, best-corrected visual acuity and intraocular pressure were determined, and slit-lamp biomicroscopy and fundus examination were performed. Nailfold videocapillaroscopy (NC) was performed in the RD group to characterize capillary morphology and blood flow. Mann-Whitney and Fisher's exact tests were used for statistical analysis. Statistical significance level was set at p<0.05 (two-sided). Results: There was no significant difference in the global RNFL between RD patients and the control group (p=0.35). The presence of avascular areas in NC was associated with a lower global RNFL thickness (p=0.026). Conclusion: The association between avascular areas in NC and the lower global RNFL thickness in RD patients suggests that systemic vasospasm severity may be related to optic nerve damage propensity. Therefore, its presence in NC may identify RD patients at risk for optic nerve head damage. A larger sample with a long-term study is needed to support the clinical and therapeutic implications of our findings.info:eu-repo/semantics/publishedVersio
- …