58,969 research outputs found
Health impacts of wind turbines
This report presents the results of a rapid, desk based analysis of peer reviewed UK and international literature from the last four years on the effects of wind turbines on human health. The review covers literature specified by the Scottish government, peer-reviewed original studies and recent peer-reviewed literature reviews.
Recent original studies consist mostly of cross-sectional studies and case studies on the effects of wind turbines on local residents. All studies present evidence for annoyance due to wind turbine noise and most concur that there is evidence for sleep disturbance in the presence of wind farms but not necessarily from noise. Both results are in agreement with the effects of noise from other environmental sources.
Other health effects are increasingly reported in the presence of wind turbines but the reviewed literature does not provide firm scientific evidence of a causal relationship with wind turbines or even more specifically wind turbine noise.
The most widely quoted cross-sectional studies show correlations between annoyance and visual impact, economic benefit and attitude related to wind turbines. Wind turbine sound is reported to be comparatively weakly related to annoyance and inseparable from the other contributing factors.
Literature on low frequency noise and infrasound (LFIS) can be categorised as reviews, sound level measurements around windfarms and discussion of mechanisms of perception and response. A Swedish review finds no evidence to support ‘wind turbine syndrome’ while another concludes that further research is required.
Regarding noise measurements, there are concerns that a new generation of wind turbines will produce a sound with a spectrum shifted down in frequency. However, a study in Australia concluded that infrasound levels near windfarms were no higher than elsewhere and that higher levels in urban areas were probably due to traffic and other human activity rather than wind turbines. Some other studies found measured sound levels near wind farms to conform with a range of criteria for LFIS.
Papers by Salt et al. propose that LFIS may differentially stimulate structures in the human inner ear, and may instigate health effects even when inaudible. The authors seek to build a speculative case utilising experimental data gleaned from guinea pigs and some observations on human experiences with specific pathological conditions. Based upon the documents submitted, the proposal is unproven, and would need clear data from hypothesis driven independent research in humans in order to be credible.
A proposal by US consultants that motion sickness-like symptoms reported at one wind farm might be caused by acoustic excitation of the balance organs is not new and has previously been discounted as an explanation for similar reported effects not involving wind turbines. Other evidence on acoustic stimulation of the balance organs has been noted but not reviewed.
Health effects from other wind turbine related sources such as shadow flicker have been reported in several studies and guidelines to be less of a problem. Careful wind farm design and operational restrictions are suggested to be sufficient to minimise the impact.
The mitigation strategies have been found to vary widely internationally with some countries and federal states using fixed noise limits, others using noise limits relative to existing background levels and many like the UK using a combination of both. Set-back distances are also used internationally but have a number of disadvantages.
The relevant UK guideline document ETSU-R-97 aims to provide a reasonable degree of protection to noise sensitive listeners; without unduly restricting the development of wind turbine renewable energy resources. In the international comparison the ETSU-R-97 guidelines tends to result in comparatively low noise limits although direct comparisons between fixed and relative noise limits are difficult. ETSU-R-97 has been criticised for its inconsistent implementation and relative complexity. Good practice guidelines by the Institute of Acoustics which aim to address the implementation issues are due to be published in May
Recommended from our members
New and emerging technologies for the treatment of inherited retinal diseases: a horizon scanning review.
The horizon scanning review aimed to identify new and emerging technologies in development that have the potential to slow or stop disease progression and/or reverse sight loss in people with inherited retinal diseases (IRDs). Potential treatments were identified using recognized horizon scanning methods. These included a combination of online searches using predetermined search terms, suggestions from clinical experts and patient and carer focus groups, and contact with commercial developers. Twenty-nine relevant technologies were identified. These included 9 gene therapeutic approaches, 10 medical devices, 5 pharmacological agents, and 5 regenerative and cell therapies. A further 11 technologies were identified in very early phases of development (typically phase I or pre-clinical) and were included in the final report to give a complete picture of developments 'on the horizon'. Clinical experts and patient and carer focus groups provided helpful information and insights, such as the availability of specialised services for patients, the potential impacts of individual technologies on people with IRDs and their families, and helped to identify additional relevant technologies. This engagement ensured that important areas of innovation were not missed. Most of the health technologies identified are still at an early stage of development and it is difficult to estimate when treatments might be available. Further, well designed trials that generate data on efficacy, applicability, acceptability, and costs of the technologies, as well as the long-term impacts for various conditions are required before these can be considered for adoption into routine clinical practice
Early assessment of vestibular function after unilateral cochlear implant surgery
Introduction : Cochlear implantation (CI) has been reported to negatively effect on the vestibular function. The study of the vestibular function has variably been conducted by different types of diagnostic tools. The combined use of modern, rapidly performable diagnostic tools could reveal useful for standardizing the evaluation protocol.
Methods: In a group of 28 subjects undergoing CI, the video Head Impulse Test (vHIT), the cervical Vestibular Evoked Myogenic Potentials (cVEMPS) and the short-form of Dizziness Handicap Inventory (DHI) questionnaire were investigated pre-operatively and post-operatively (implant on and off) in both the implanted and the contralateral, non-implanted ear. All surgeries were performed with a round window approach (RWA), except for three otosclerosis cases were the extended RWA (eRWA) was used.
Results: The vHIT of the lateral semicircular canal showed a pre-operative vestibular involvement in nearly 50% of the cases, whilst the three canals were contemporarily affected in only 14% of them. In all the hypo-functional subjects, cVEMPs were absent. A low VOR gain in all the investigated SSCC was found in 4 subjects (14%). In those subjects, (21.7%) in whom cVEMPs were pre-operatively present and normal in the operated side, absence of response was post-operatives recorded.
Discussion/Conclusion: The vestibular protocol applied for the study showed to be appropriate for distinguishing between the CI operated and the non-operated ear. In this regard, cVEMPs showed to be more sensitive than vHIT for revealing a vestibular sufferance after CI, although without statistical significance. Finally, the use of the RWA surgery was apparently not avoiding signs of vestibular impairment to occur
Ranking Significant Discrepancies in Clinical Reports
Medical errors are a major public health concern and a leading cause of death
worldwide. Many healthcare centers and hospitals use reporting systems where
medical practitioners write a preliminary medical report and the report is
later reviewed, revised, and finalized by a more experienced physician. The
revisions range from stylistic to corrections of critical errors or
misinterpretations of the case. Due to the large quantity of reports written
daily, it is often difficult to manually and thoroughly review all the
finalized reports to find such errors and learn from them. To address this
challenge, we propose a novel ranking approach, consisting of textual and
ontological overlaps between the preliminary and final versions of reports. The
approach learns to rank the reports based on the degree of discrepancy between
the versions. This allows medical practitioners to easily identify and learn
from the reports in which their interpretation most substantially differed from
that of the attending physician (who finalized the report). This is a crucial
step towards uncovering potential errors and helping medical practitioners to
learn from such errors, thus improving patient-care in the long run. We
evaluate our model on a dataset of radiology reports and show that our approach
outperforms both previously-proposed approaches and more recent language models
by 4.5% to 15.4%.Comment: ECIR 2020 (short
Monte Carlo Simulation of the Three-dimensional Ising Spin Glass
We study the 3D Edwards-Anderson model with binary interactions by Monte
Carlo simulations. Direct evidence of finite-size scaling is provided, and the
universal finite-size scaling functions are determined. Using an iterative
extrapolation procedure, Monte Carlo data are extrapolated to infinite volume
up to correlation length \xi = 140. The infinite volume data are consistent
with both a continuous phase transition at finite temperature and an essential
singularity at finite temperature. An essential singularity at zero temperature
is excluded.Comment: 5 pages, 6 figures. Proceedings of the Workshop "Computer Simulation
Studies in Condensed Matter Physics XII", Eds. D.P. Landau, S.P. Lewis, and
H.B. Schuettler, (Springer Verlag, Heidelberg, Berlin, 1999
A generalized demodulation approach to time-frequency projections for multicomponent signals
Accepted versio
Overcoming barriers to knowledge management: Visiting the dark side of the organization
Like many organisational endeavours, the success of knowledge management praxis is subject to the vagaries of human nature. There are many reasons, most of which are underpinned by the need for power, why people might choose to hoard, distort and manipulate information. Recent studies undertaken by the authors have demonstrated the way in which knowledge management processes can also be manipulated to impede the distribution of power. This dark side of organisational behaviour is usually subversive, can be unconscious or conscious and always acts against the interests of the group or part of the group. It is important for those involved in knowledge management practice to be acutely aware of the dynamics of the dark side and how they may interfere with their best intentions. As well as describing this phenomenon, this paper also suggests a number of ways in which the dark side might be overcome. Chiefly, drawing on general systems theory, we suggest some techniques that facilitate both open communication and open process
Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior.
Functional imaging and gene expression studies both implicate the medial prefrontal cortex (mPFC), particularly deep-layer projection neurons, as a potential locus for autism pathology. Here, we explored how specific deep-layer prefrontal neurons contribute to abnormal physiology and behavior in mouse models of autism. First, we find that across three etiologically distinct models-in utero valproic acid (VPA) exposure, CNTNAP2 knockout and FMR1 knockout-layer 5 subcortically projecting (SC) neurons consistently exhibit reduced input resistance and action potential firing. To explore how altered SC neuron physiology might impact behavior, we took advantage of the fact that in deep layers of the mPFC, dopamine D2 receptors (D2Rs) are mainly expressed by SC neurons, and used D2-Cre mice to label D2R+ neurons for calcium imaging or optogenetics. We found that social exploration preferentially recruits mPFC D2R+ cells, but that this recruitment is attenuated in VPA-exposed mice. Stimulating mPFC D2R+ neurons disrupts normal social interaction. Conversely, inhibiting these cells enhances social behavior in VPA-exposed mice. Importantly, this effect was not reproduced by nonspecifically inhibiting mPFC neurons in VPA-exposed mice, or by inhibiting D2R+ neurons in wild-type mice. These findings suggest that multiple forms of autism may alter the physiology of specific deep-layer prefrontal neurons that project to subcortical targets. Furthermore, a highly overlapping population-prefrontal D2R+ neurons-plays an important role in both normal and abnormal social behavior, such that targeting these cells can elicit potentially therapeutic effects
- …
