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We introduce a flexible approach for the time-frequency analysis of multicomponent
signals involving the use of analytic vectors and demodulation. The demodulated
analytic signal is projected onto the time-frequency plane so that, as closely as pos-
sible, each component contributes exclusively to a different ‘tile’ in a wavelet packet
tiling of the time-frequency plane, and at each time instant the contribution to each
tile definitely comes from no more than one component. A single reverse demod-
ulation is then applied to all projected components. The resulting instantaneous
frequency of each component in each tile is not constrained to a set polynomial
form in time, and is readily calculated, as is the corresponding Hilbert energy spec-
trum. Two examples illustrate the method.

In order to better understand the effect of additive noise, the approximate vari-
ance of the estimated instantaneous frequency in any tile has been formulated by
starting with pure noise and studying its evolving covariance structure through each
step of the algorithm. The validity and practical utility of the resulting expression
for the variance of the estimated instantaneous frequency is demonstrated via a
simulation experiment.
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1. Introduction

The analysis of signals with time-evolving oscillatory structure is an area of active
interest. Basic representations of such signals are bilinear distributions (e.g., Co-
hen 1995) which are calculated by filtering the signal and its complex conjugate
with a kernel function. This generally entails problems for signals with multiple
components unless the kernel decays very rapidly in time-frequency, thus avoiding
damaging interference effects. Our aim in this work is to introduce a simple ap-
proach to the problem of tracking the time-dependent frequency content of each
component of a multicomponent signal via the undecimated discrete wavelet packet
transform. It is well-known that wavelet transforms ‘tile’ the time-frequency plane
in a proportional bandwidth or octave band manner. The extension to wavelet pack-
ets allows more irregular, but still rectangular partitioning of the time-frequency
plane. Such rectangular tilings of the time-frequency plane are not best suited to
representing some classes of signals (such as FM signals) which may have energy
distributions which are slanted, non-linear etc in the time-frequency plane.
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Non-rectangular tilings can be designed. Baraniuk and Jones (1993) designed
scale-shear fan bases corresponding to tiling with truncated wedges, well-matched
to representing linear chirp signals with few expansion coefficients. Chirplet trans-
forms (Mann and Haykin, 1992, 1995; Baraniuk and Jones, 1995, 1996) provide a
systematic framework for designing new signal representations, and can be extended
to deal with not just slant but curvature in the time-frequency plane, but a general
approach to discrete chirplet transforms is not forthcoming. Gaussian chirplets do
not form an orthogonal basis and adaptive matching pursuit Gaussian chirplet de-
compositions have thus been advocated (Yin et al, 2002). Philosophically related is
research by Hlawatsch et al (1999) and Papandreou-Suppappola et al (2001, 2002)
who explore time and frequency warping.

The fractional Fourier transform (FrFT), probably more widely used in optical
research, is also closely related to wavelet and chirp transforms (Ozaktas et al,
1994). The Fourier transform of fractional order a is defined in such a way that the
standard Fourier transform is a special case with order a = 1 while successively
transforming with fractional orders a1 and a2 is the same as transforming with
order a1 +a2 (so that the standard Fourier transform corresponds to two successive
half-transforms). Ozaktas et al (1994) pointed out that the effect of the FrFT is to
rotate the Wigner distribution of a signal and showed that consequently linear chirp
functions are simply the time domain representation of signals that appear as delta
functions or harmonics in other fractional domains. Similarly, Capus et al (2000)
noted that the FrFT is composed of a multiplication by a linear chirp in the time
domain, followed by Fourier transformation, followed by multiplication by a linear
chirp in the transformed domain, and finally a complex scaling. Mendlovic et al
(1997), (see also Huang and Suter, 1996), suggested a ‘fractional wavelet transform’
algorithm which consists of an FrFT of order a followed by continuous wavelet
transformation; for reconstruction use the inverse wavelet transform followed by an
FrFT of order −a. If the signal was dominated by a linear chirp, then the value
of a should match the slant in the time-frequency plane. In general the order a is
chosen by optimization and it is suggested that the high computational burden can
be reduced by use of optical processing.

Other recent work includes Stevenson et al (2001) and Capus and Brown (2003).
Our approach can be viewed as a Fourier/wavelet packet transform hybrid.

Instead of using undecimated wavelet packet coefficient sequences, it uses undec-
imated wavelet packet detail sequences, each of which can be viewed as arising
by Fourier transforming the signal, multiplying it by the modulus squared of the
Fourier transform of a band-pass filter, followed by inverse Fourier transformation.
Our approach to generalizing this approach is to replace the standard Fourier trans-
formation by the generalized Fourier transformation (GFT) of Detka and El-Jaroudi
(1996). For a signal x(t) the GFT is given by XG(f) =

∫ ∞
−∞ x(t) e−i2π[ft+s0(t)]dt,

where s0(t) is a real-valued function depending on time only and specifies the evolu-
tionary phase behaviour of the signal. Note this is the same as applying the standard
Fourier transform to x(t)e−i2πs0(t). The inverse GFT corresponds to applying the
usual inverse Fourier transform to XG(f) followed by multiplication of the result
by ei2πs0(t) since

x(t) =
∫ ∞

−∞
XG(f)ei2π[ft+s0(t)]df = ei2πs0(t)

∫ ∞

−∞
XG(f)ei2πftdf. (1.1)
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Hence if XG(f) ≡ δ(f − f0) then x(t) = ei2π[f0t+s0(t)], i.e., a signal with instan-
taneous frequency ν(t) = f0 + s′0(t) will be mapped to the point f = f0, where
s′0(t) = d

dts0(t). Hence if we wish to map a signal with for example a curved path
in the time-frequency plane specified by f0 + s′0(t) into a wavelet packet passband
(rather than a single point), we need merely to specify a function s(t) approximat-
ing s0(t) such that the demodulated function x(t)e−i2πs(t) will be mapped into the
passband. Of course this result is very flexible in that s′0(t) is not constrained to be
linear or even quadratic.

Many audio, acoustic and speech-type signals can be characterized as multi-
component signals with time-frequency distribution consisting of several parallel,
or similarly-oriented, linear or curved energy paths with low instantaneous band-
width. Examples abound: Flandrin (1988) examined bat sonar, Cohen (1989 and
1992) considers seismic signals and whale sounds, Sucic and Boashash (2003) look
at bird song, and Gribonval and Bacry (2003) consider musical recordings. Our
approach is particularly well-suited to, and most easily implemented for, such sig-
nals, since with the demodulation the components should generally be shiftable into
different wavelet packet frequency bands.

In order to track the time-dependent frequency content of each component of a
multicomponent signal we shall first demodulate the complete signal, then project
it onto the time-frequency plane in a manner such that (i) as closely as possible
each component contributes exclusively to a different ‘tile’ in the chosen (wavelet
packet) tiling of the time-frequency plane, and (ii) at each time instant the contribu-
tion to each tile definitely comes from no more than one component. The projected
components are ‘analytic’ vectors. The single reverse demodulation is then applied
to all projected components. The instantaneous frequency of each component in
each tile is then well-defined and can be calculated and weighted by the energy to
yield the ‘Hilbert energy spectrum’ for that projection. Agglomeration over projec-
tions yields the complete Hilbert spectrum (Huang et al, 1998; Olhede and Walden,
2004a).

2. The generalized demodulation algorithm

We give details of our algorithm using the more practically useful discrete-time
notation. We assume we have sampled a continuous-time (multicomponent) signal
x(t) with a sample interval of unity to get an even-length vector of observations
x = [x0, . . . , xN−1]T and have done likewise to s(t) to get s = [s0, . . . , sN−1]T . For
a sample interval of unity the Nyquist frequency is f = 1/2.

(a) Analytic vectors and forward demodulation

We firstly create an ‘analytic’ vector y = x+iHx where H is the discrete Hilbert
transform (DHT) matrix (Marple, 1999), and then apply the forward demodulation
to obtain dl = yle−i2πsl , l = 0, . . . , N − 1. We can write this in matrix form as
d = (C − iS)y, where (C)lm = cos(2πsl)δlm, and (S)lm = sin(2πsl)δlm, where δlm

is the Kronecker delta, and m = 0, . . . , N − 1.
The discrete Fourier transform of an analytic vector has zero coefficients for

negative frequencies. Hence, by working with the analytic vector, any energy in x
in the negative frequencies is not inadvertently moved into the positive frequencies
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by the demodulation. The new complex-valued vector d is not analytic, and so we
now create a new analytic vector z = d + iHd.

We assume x to be band-limited to
[
− 1

2 + 1
N ,− 1

N

]⋃ [
1
N , 1

2 − 1
N

]
for discrete

computation of the analytic vector y. The effect of the demodulation is to change
frequencies by −s′l, where s′l denotes the discrete version of s′(t). When the new
analytic vector z is created, we must assume that d is band-limited to

[
1
N , 1

2 − 1
N

]
,

or, equivalently, that y is band-limited to
[

1
N + s′l,

1
2 − 1

N + s′l
]
, for l = 0, . . . , N−1.

This is the same as saying that the demodulation must not move signal component
energy out of the frequency range

[
1
N , 1

2 − 1
N

]
and this is simple to check graphically,

as shown by the examples of section 3.

(b) Wavelet packet projections

The particular wavelet-type transform which we will apply to z is the so-called
maximal overlap discrete wavelet packet transform (MODWPT) (Walden & Con-
treras Cristán, 1998). This is an undecimated transform. Each MODWPT is as-
sociated with a transform level j, (j = 1, . . . , J0), and the jth level decomposes
the frequency interval [0, 1/2] into 2j equal pass-band intervals Ij,n =

(
n

2j+1 , n+1
2j+1

]
,

where n, (n = 0, . . . , 2j − 1), denotes the frequency band index within level j. For
any j the Ij,n×[0, (N−1)] partition (tile) the time-frequency plane into equal width
rectangles. Of course a larger value of j corresponds to a narrower pass-band, and
our interest will be in the final level J0 MODWPT which decomposes the frequency
interval [0, 1/2] into 2J0 equal pass-band intervals; the choice of J0 is considered in
section 2(f).

For the MODWPT coefficients indexed by (j, n) we write W̃j,n = W̃j,n z where
W̃j,n is an N -length column vector, and W̃j,n is an N ×N transformation matrix.
The wavelet packet coefficients for t = 0, . . . , N − 1 can be written as W̃j,n,t =∑Lj−1

l=0 ũj,n,lz(t−l) mod N where {ũj,n,l} is a jth level and nth band MODWPT
wavelet packet filter of length Lj = (2j − 1)(L − 1) + 1, derived from the basic
DWT scaling and wavelet filters {gl, l = 0, . . . , L − 1} and {hl, l = 0, . . . , L − 1}
as described in Percival & Walden (2000, sec. 6.6). The tilde notation is used to
distinguish the MODWPT filters and coefficients from the decimated (DWPT)
equivalents, as in Percival & Walden (2000).

Let ũ◦
j,n,l be the filter obtained by periodizing ũj,n,l to length N, i.e., ũ◦

j,n,l =∑∞
m=0 ũj,n,l+mN . Then an equivalent representation is

W̃j,n,t =
N−1∑
l=0

ũ◦
j,n,lz(t−l) mod N . (2.1)

We will actually make use of sequences D̃j,n = W̃T
j,nW̃j,n z = W̃T

j,nW̃j,n with
j = J0, n = 1, . . . , 2j − 1. For n > 0 the sequence {D̃j,n,l, l = 0, . . . , N − 1}
consists of level j, frequency band n, MODWPT detail coefficients. (The sequence
{D̃j,0,l, l = 0, . . . , N − 1} involves only low-pass filters and covers low frequencies
and trends).

For a level j the analytic vector can be recovered via z =
∑2j−1

n=0 D̃j,n so that if
we define projection matrices PRj,n = W̃T

j,nW̃j,n then (Olhede and Walden, 2004a)
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A generalized demodulation approach to time-frequency projections 5

z =
∑2j−1

n=0 Pj,nz =
∑2j−1

n=0 D̃j,n, i.e., we can decompose z into a linear combination
of the contributions to z in projection sub-spaces which tile the time-frequency plane
via a set of equal bandwidth rectangles. We note that at any time l, l = 0, . . . , N−1,
energy in x in the frequency band

(
n

2j+1 + s′l,
n+1
2j+1 + s′l

]
, is mapped to Ij,n.

Any MODWPT detail sequence D̃j,n created as above is an analytic vector. To
see this note that since z = d+iHd, we have that D̃j,n = Pj,nz = Pj,nd+iPj,nHd.

But the matrices Pj,n = W̃T
j,nW̃j,n and H commute (see Appendix A) so that

D̃j,n = Pj,nd + iHPj,nd, and hence D̃j,n is an analytic vector.

(c) Reversed demodulation

Any details vector D̃j,n produced as above can be viewed as having been created
by (discrete) GFT, followed by multiplication with the modulus squared of the
Fourier transform of a band-pass filter, followed by inverse Fourier transformation.
To turn this last step of inverse Fourier transformation into inverse GFT, we carry
out a reverse demodulation (see (1.1)) via Yj,n,l = D̃j,n,l ei2πsl , l = 0, . . . , N − 1.

(d) The Hilbert spectrum and instantaneous frequency

For any projection indexed by (j, n) the Hilbert spectrum (Huang et al, 1998;
Olhede and Walden, 2004a) can be formed by firstly calculating the amplitude and
phase sequences given by

Aj,n,l =
√

[�2{Yj,n,l} + �2{Yj,n,l}] and φj,n,l = tan−1

[�{Yj,n,l}
�{Yj,n,l}

]
. (2.2)

The derivative of the phase at discrete time l may be calculated via a fourth-
order generalized phase difference estimator (Boashash, 1992, p. 542) so that the
instantaneous frequency is given by

νj,n,l =
1
2π

2∑
m=−2

rmφj,n,l−m (2.3)

with r∓1 = ± 8
12 , r±2 = ± 1

12 .
Now, for a large M, define M frequencies fk = k∆f, k = 0, . . . , M − 1, where

∆f = 1/[2(M−1)], covering the interval [0, 1/2]. Then the Hilbert energy spectrum
of {Yj,n,l} may be defined as

Sj,n;l,fk
= A2

j,n,lδk,〈νj,n,l/∆f〉, l = 0, . . . , N − 1; fk = 0, . . . , 1/2, (2.4)

Here δk,m is the Kronecker delta, 〈x〉 denotes the integer closest to x; we used
M = 512.

(e) The algorithm summarized

1. Create the analytic vector y = x + iHx.

2. Forward demodulate using d = (C − iS)y.

3. Create new analytic vector z = d + iHd.
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4. Compute MODWPT projections D̃J0,n = PJ0,nz, n = 1, . . . , 2J0 − 1.

5. Carry out reverse demodulation: YJ0,n = (C + iS)D̃J0,n.

6. Compute the instantaneous frequency sequences {νJ0,n,l}, n = 1, . . . , 2J0 − 1
according to (2.3). Compute and plot the Hilbert energy spectrum as detailed
in (2.4).

(f ) The choice of J0

In our algorithm we will compute MODWPT projections for level j = J0, and so
we need to choose J0. Using, as in Olhede and Walden (2004a), the optimal asymp-
totic frequency resolution filters {gl, l = 0, . . . , L − 1}, known as Fejér-Korovkin
filters, the band-pass concentration of the MODWPT filters ũJ0,n,l is very good,
having the property that the only significant leakage from band n is into band n−1
and/or n + 1, but no further. This is true at least for J0 = 2, 3 with L = 18 and 4
with L = 22. (See figure 4 of Olhede and Walden (2004a) for J0 = 3.) J0 = 2, 3 and
4 corresponds to dividing [0, 1/2] into 4, 8 or 16 frequency bands. Our ‘rule’ is to
choose J0 as small as possible consistent with having at least one empty projection
band between bands containing signal from different components in step 4 of the
algorithm of section 2(e). In the examples which follow it is seen that this strategy
can be achieved by taking J0 = 3. Since the leakage properties hold at least to the
16 band case of J0 = 4, the minimum frequency separation between components
suitable for our algorithm is 1/16th of the Nyquist frequency.

3. Examples

(a) Application to real data

Our first example is that of the echolocation pulse emitted by the Large Brown
Bat, Eptesicus Fuscus, digitized with a sample interval of ∆t = 7µs, with N = 400.

Fig. 1(a) shows the standard Wigner-Ville distribution for the analytic signal
vector y. The p = 3 significant components generate p(p − 1)/2 = 3 ‘outer’ in-
ferences (i.e., interferences due to interaction of components — Flandrin (1999,
p. 232)), and there is also visible ‘inner’ interference where the time-frequency
energy distributions are noticeably nonlinear. Fig. 1(b) shows the ordinary Hilbert
energy spectrum via MODWPT projections, excluding any demodulation, i.e., steps
2, 3 and 5 are omitted in the algorithm of section 2(e). Here j = J0 = 3 so that
Ij,n =

(
n

2j+1∆t ,
n+1

2j+1∆t

]
=

(
n

16∆t ,
n+1
16∆t

]
, for n = 0, . . . , 7; these 8 frequency pass-

bands are delineated by the horizontal dotted lines; the band between zero and
the first horizontal dotted line corresponds to n = 0, with increasing n until the
top interval between the uppermost horizontal line and the top of the plot which
covers the band n = 7. Although, as required in multicomponent analysis, at each
time instant the different frequency chirps have been successfully separated into
different frequency subbands, each component spans at least two subbands and is
noticeably affected by the band-edge imperfections in the (albeit extremely good)
band-pass filters generated using Fejér-Korovkin filter coefficients — see Olhede
and Walden (2004a).
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Figure 1. (a) Wigner-Ville distribution corresponding to analytic version y of the
bat echolocation pulse. (b) The Hilbert spectrum using the MODWPT, 18-point
Fejér-Korovkin wavelet filters, and J0 = 3. (c) The Hilbert spectrum incorporating only
forward demodulation. (d) The Hilbert spectrum using the complete algorithm. Details of
marked lines etc are given in the text.

Turning now to demodulation, the form of sl used here was sl = b2l
2 + b1l, l =

0, . . . , N − 1, where b2 = −0.0003 and b1 = 0.175; hence s′l = (2b2l + b1)/∆t. The
value of b2 is easily ‘guesstimated’ from the Hilbert spectrum results of Fig. 1(b)
by following the middle component, and b1 can then be chosen to suitably align the
signal components within the passbands as shown via the diagonal dashed lines in
Fig. 1(b). The bottom dashed line shows n

2j+1∆t + s′l, l = 0, . . . , N − 1, for n = 1,
i.e., 1

16∆t + s′l, l = 0, . . . , N − 1. The next to bottom line shows n+1
2j+1∆t + s′l, l =

0, . . . , N−1, for n = 1, i.e., 2
16∆t +s′l, l = 0, . . . , N−1. So the interval delineated by

the two bottom lines is
(

n
2j+1∆t + s′l,

n+1
2j+1∆t + s′l

]
, l = 0, . . . , N − 1, for n = 1 and

j = J0 = 3, and as pointed out above, energy in such an interval will be mapped
to Ij,n = I3,1 =

(
1

16∆t ,
2

16∆t

]
following the demodulation in step 2 of the algorithm
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of section 2(e). This interval is marked with ‘n = 1’ on the right of the plot. The
corresponding intervals for n = 3 and n = 5 are also marked on the right of Fig. 1(b)
and, following the demodulation, energy in these intervals will be mapped to I3,3

and I3,5.
Fig. 1(c) shows the Hilbert spectrum via MODWPT projections incorporating

forward demodulation only, i.e., only step 5 is omitted from the algorithm in sec-
tion 2(e). We note as predicted from Fig. 1(b), the energy in the signal has been
mapped to the pass-bands I3,1, I3,3 and I3,5. The demodulation has succeeded in
realigning the time-frequency energy to (almost perfectly) lie within the frequency
subbands. Fig. 1(d) shows the extremely good results obtained using the full algo-
rithm incorporating both the forward and reverse demodulation steps. The curvature
of the lower frequency component is well-preserved — there is no assumption of lin-
ear chirp components.

Our chosen demodulation has kept signal component energy in the frequency
range

[
1

N∆t ,
1

2∆t − 1
N∆t

]
, as required — see section 2(a). We note that a poor choice

of sl could cause energy loss by not satisfying this requirement, and/or result in
one or more demodulated components crossing band boundaries and suffering band
edge-effects as seen in the basic Hilbert spectrum without demodulation in Fig. 1(b).

(b) Application to synthetic data

Here we consider a synthetic signal which closely resembles a whale vocalisation
in shape. It consists of two quadratic chirps, one having a shorter duration than
the other:

xl =

{
sin(a1l

3 + a2l
2 + a3l), l = 0, . . . , 249

sin(a1l
3 + a2l

2 + a3l) + sin(a4(l − 512)3 + a5l), l=250, . . . ,1023

with a1 = −1.2566 10−6, a2 = 0.0019, a3 = 1.1983, a4 = −1.2783 10−6, a5 =
1.3823. Fig. 2(a) shows the standard Wigner-Ville distribution for the analytic
signal vector y. The two components generate a single case of outer inteference (be-
tween the components), while the notable curvature of the components generates
severe inner interference. Fig. 2(b) shows the Hilbert spectrum via MODWPT pro-
jections, excluding any demodulation. Here j = J0 = 3 again so that, with ∆t = 1,
Ij,n =

(
n
16 , n+1

16

]
, for n = 0, . . . , 7; these 8 frequency pass-bands are delineated

by the horizontal dotted lines. Although, as with the bat signal, at any time the
different frequency chirps have been successfully separated into different frequency
subbands, here both components cross three subbands leading to band-edge imper-
fections. To eliminate these artifacts we can apply the demodulation method. To
find {sl} we defined the quadratic s′l = 3b3l

2 + 2b2l + c and found the parameter
values b3, b2, c by matching of its values at l = 0, 500 and 1000 to f = 0.125, 0.28125
and 0.14, read off the plot by eye; this choice of points correspond roughly to an
arc halfway between the two components. Then we let sl = b3l

3 + b2l
2 + b1l so that

s′l = 3b3l
2 + 2b2l + b1, where b1 is chosen to align the signal components sensibly

within the passbands as shown via the curved dashed lines in Fig. 2(b). The val-
ues used were b1 = −8.5611 10−2, b2 = 3.0592 10−4 and b3 = −1.9874 10−7. We
have not used the known simulation parameters a1, . . . , a5 to obtain sl, but worked
entirely from the Hilbert spectrum of Fig. 2(b), as would be the case in practice.
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A generalized demodulation approach to time-frequency projections 9

Fig. 2(c) shows the Hilbert spectrum via MODWPT projections incorporat-
ing forward demodulation only. The energy in the signal has been mapped to the
pass-bands I3,2 and I3,4. The time-frequency energy lies comfortably within the
frequency subbands. Also shown by the dash-dot lines in Fig. 2(c) are the instan-
taneous frequencies calculated directly from the two separate components of the
synthetic whale vocalization signal.

Our chosen demodulation has kept signal component energy in the frequency
range

[
1
N , 1

2 − 1
N

]
, as required.

Fig. 2(d) shows the final result using both forward and reverse demodulation
steps. Most of the artifacts visible in Fig. 2(b) have been completely eliminated, and
the result is excellent. Moreover the instantaneous frequencies are also plotted as
dash-dot lines in this figure, but cannot be distinguished from the Hilbert spectrum
calculated with our algorithm.

4. Standard deviation of the instantaneous frequency
estimate in the presence of noise

In section 2(e) we gave the steps in the demodulation algorithm, ending with the
calculation of instantaneous frequency (and thence the Hilbert spectrum). Hypo-
thetically some bias could be introduced in the calculation of the instantaneous
frequency of a component, through the steps of the deterministic algorithm of sec-
tion 2(e). However, the whale vocalisation was shown to exhibit no significant bias,
and so it is not inevitable. Minimization of wavelet packet filter leakage effects by
choosing J0 as described in section 2(f), and choosing s′l to align the signal compo-
nents comfortably within (i.e., not on the edge of) the passbands, will always act
to reduce bias.

We will now derive an expression for the variance of the estimated instantaneous
frequency when the signal is observed in the presence of additive white noise. It
does not refer to any formal uncertainty principle associated with our algorithm of
section 2(e). Starting with white noise, we examine the effects of the various steps
of the algorithm on the correlation structure of the real and imaginary parts of the
resulting complex vectors.

(a) General correlation structure

We can write the DHT matrix defined by the algorithm in Marple(1999) as the
circulant

H =



0 q◦N−1 0 q◦N−3 0 . . . 0 q◦1
q◦1 0 q◦N−1 0 q◦N−3 . . . q◦3 0
0 q◦1 0 q◦N−1 0 . . . 0 q◦3

q◦3 0 q◦1 0 q◦N−1 . . . q◦5 0
0 q◦3 0 q◦1 0 0 q◦5
...

. . .
...

...
...

. . .
...

q◦N−1 0 q◦1 0


(4.1)

Proc. R. Soc. Lond. A., 461, 2159–79, 2005



10 S. Olhede and A.T. Walden

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

fr
eq

ue
nc

y

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

fr
eq

ue
nc

y

time

(a) (b)

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

fr
eq

ue
nc

y

time
0 200 400 600 800 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

fr
eq

ue
nc

y

time

(c) (d)
Figure 2. (a) Wigner-Ville distribution corresponding to analytic version y of the ar-
tificial whale vocalisation. (b) The Hilbert spectrum using the MODWPT, 18-point
Fejér-Korovkin wavelet filters, and J0 = 3. (c) The Hilbert spectrum incorporating only
forward demodulation. (d) The Hilbert spectrum using the complete algorithm. Details of
marked lines etc are given in the text.

where (e.g., Hahn, 1996, p. 143) the periodized filter {q◦l } is given by

q◦l =
2
N

sin2[lπ/2] cot[lπ/N ] =

{
2
N cot[lπ/N ], l odd,

0, l even,
(4.2)

for l = 0, . . . , N − 1. But

{q◦l : l = 0, . . . , N − 1} ←→ {Q◦
k : k = 0, . . . , N − 1},
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where ←→ denotes ‘Fourier transform pair’ and Q◦
k is given by

Q◦
k =

N−1∑
l=0

q◦l e−i2πkl/N =


0, k = 0, N

2 ,

−i, k = 1, . . . , N
2 − 1,

i, k = N
2 + 1, . . . , N − 1,

(4.3)

where k/N denotes a Fourier frequency. The definition of ql means that H is,
importantly, skew-symmetric, i.e., H = −HT .

Setting x = ε, an N -length vector of independent and identically distributed
(IID) Gaussian noise (mean zero, variance σ2

ε ), we firstly create the analytic vector
y = ε + iHε = ε + i ε̆, say, where ε̆ ≡ Hε. Then

var{ε} = σ2
ε I, var{ε̆} ≈ σ2

ε I, cov{ε, ε̆} ≡ E{ε, ε̆T } = σ2
εHT , cov{ε̆, ε} = σ2

εH.

The approximation for the second variance follows because of the transfer function
structure in (4.3) — energy at Fourier frequencies 0 and 1/2 are removed by the
DHT. (Since zero-mean white noise will have no energy at frequency zero, only the
latter frequency will matter). In fact (Olhede and Walden, 2004b),

E{ε̆lε̆m} =

{
σ2

ε
N−2

N , if l = m,

−σ2
ε

[1+(−1)l−m]
N , otherwise.

(4.4)

So provided N is large, then for practical purposes we can replace the approximation
by an equality, and this is done hereafter. Other useful results are

cov{εl, ε̆m} = σ2
ε (HT )lm = −σ2

ε (HT )ml = − cov{εm, ε̆l}
and cov{εl, ε̆l} = σ2

ε (HT )ll = 0.

Step 2 of the algorithm in section 2(e) consists of the demodulation dl =
yle−i2πsl , l = 0, . . . , N − 1. Since C and S are both diagonal matrices they are
symmetric (so that, e.g., C = CT ) and commute with each other. Also C will com-
mute with any matrix which has all diagonal entries of zero, and similarly for S;
hence both C and S will commute with H. Then with y = ε + i ε̆, we obtain

d = (C − iS)(ε + i ε̆) = (Cε + S ε̆) + i(Cε̆ − Sε).

If we now write d = �(d) + i�(d) we get

var{�(d)} = E{(Cε + S ε̆)(Cε + S ε̆)T }
= E{CεεTCT + Cεε̆TST + S ε̆εTCT + S ε̆ε̆TST }
= σ2

ε [CCT + CHTST + SHCT + SST ]
= σ2

ε [CCT + SST ] + σ2
ε [C(HT + H)ST ],

where we have made use of the symmetry and commutative properties of C and S.
Now CCT + SST = I and HT + H = 0 since H is skew-symmetric, so we see that
var{�(d)} = σ2

ε I. In a similar way we obtain var{�(d)} = σ2
ε I and

cov{�(d),�(d)} = E{(Cε + S ε̆)(Cε̆ − Sε)T }
= E{Cεε̆TCT − CεεTST + S ε̆ε̆TCT − S ε̆εTST }
= σ2

ε [CHTCT − CST + SCT − SHST ]
= σ2

ε [CHTCT + SHTST ] = σ2
εHT [CCT + SST ] = σ2

εHT .
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So we have shown the covariance structure is unaffected by the demodulation, as
would be expected.

Step 3 of the algorithm in section 2(e) creates a new analytic vector z = d +
iHd = d + id̆, say, where d̆ ≡ Hd. We might expect the real and imaginary parts
of z to have the same covariance properties as the real and imaginary parts of
y, since the demodulation has not changed these second-order properties. There
is an important difference however: z is the analytic version of a complex-valued
vector, while y is the analytic version of a real-valued vector. Now z = d + iHd =
�(d) −H�(d) + i[�(d) + H�(d)]. So

cov{�(z),�(z)} = E{(�(d) −H�(d))(�(d) + H�(d))T }
= E{�(d)�(d)T + �(d)�(d)THT

−H�(d)�(d)T −H�(d)�(d)THT }
= σ2

ε [HT + HT −H−H(HHT )]
= σ2

εHT [3I + (HHT )].

The final line follows from the skew-symmetry of H. Now, as shown in Appendix B,
HHT is given by the symmetric Toeplitz matrix with first row

[1 − 2
N

, 0,− 2
N

, 0,− 2
N

, . . . ,− 2
N

, 0] (4.5)

and as N → ∞ we see that HHT → I. Hence, for large N ,

cov{�(z),�(z)} = 4σ2
εHT , (4.6)

and similarly, for large N ,

var{�(z)} = 4σ2
ε I and var{�(z)} = 4σ2

ε I. (4.7)

Importantly, we see that, apart from the factor of 4, the variances and covariances
of the real and imaginary parts of z are the same as for the real and imaginary
parts of y.

In step 4 of the algorithm we compute MODWPT projections D̃j,n = Pj,nz.
Since Pj,n is real-valued,

D̃j,n = Pj,nz = Pj,n�(z) + iPj,n�(z) = �(D̃j,n) + i�(D̃j,n),

say. Then

var{�(D̃j,n)} = 4σ2
εPj,nPT

j,n and var{�(D̃j,n)} = 4σ2
εPj,nPT

j,n,

and
cov{�(D̃j,n),�(D̃j,n)} = 4σ2

εPj,nHT PT
j,n.

It was shown in Olhede and Walden (2004b) that xTHT x = 0 for any real-valued
vector x so that (cov{�(D̃j,n),�(D̃j,n)})ll = 0, l = 1, . . . , N, i.e., all diagonal
entries of the covariance matrix are zero.

A simple approximate expression for the elements of var{�(D̃j,n)} is derived in
Appendix C, equation (C 3), with the same expression for var{�(D̃j,n)}. Likewise
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in Appendix C, equation (C 2), a simple approximate expression for the elements
of cov{�(D̃j,n),�(D̃j,n)} is derived.

Step 5 of the algorithm consists of the reverse demodulation: Yj,n = (C+iS)D̃j,n,
which, as we showed for the forward step, will not alter the covariance structure.
Hence if we write Yj,n = �{Yj,n}+ i�{Yj,n}, then the variances and covariances of
�{Yj,n} and �{Yj,n} are the same as for �(D̃j,n) and �(D̃j,n), above.

Hence, starting with x = ε, a zero-mean IID Gaussian noise vector, we have
found the (approximate) covariance structure of the complex-valued random vector
Yj,n resulting from the five steps of the algorithm.

(b) Instantaneous frequency

Since all steps of the algorithm up to and including reverse demodulation consist
of linear matrix operations, we know that if our original input signal x consists of
both deterministic and zero-mean white noise components, then the result of the
algorithm at step 5 is given by Yj,n = Y(D)

j,n +Y(ε)
j,n, where henceforth the superscripts

D and ε indicate the deterministic and noise components, respectively, and Y(ε)
j,n

has a mean of zero. We can express a component of the deterministic part Y(D)
j,n in

terms of its amplitude and phase:

Y(D)
j,n,l = A

(D)
j,n,le

iφ
(D)
j,n,l . (4.8)

But from (2.2) the lth component of the estimated instantaneous phase vector
at level j frequency band index n is

φ̂j,n,l = tan−1

[�{Yj,n,l}
�{Yj,n,l}

]
= tan−1

[
�{Y(D)

j,n,l} + �{Y(ε)
j,n,l}

�{Y(D)
j,n,l} + �{Y(ε)

j,n,l}

]
,

and a first-order Taylor expansion about (�{Y(D)
j,n,l},�{Y

(D)
j,n,l}) gives

φ̂j,n,l ≈ tan−1

[
�{Y(D)

j,n,l}
�{Y(D)

j,n,l}

]
+

[
�{Y(D)

j,n,l}�{Y
(ε)
j,n,l} − �{Y(D)

j,n,l}�{Y
(ε)
j,n,l}

�2{Y(D)
j,n,l} + �2{Y(D)

j,n,l}

]
. (4.9)

From (4.8) we know [A(D)
j,n,l]

2 = �2{Y(D)
j,n,l} + �2{Y(D)

j,n,l}, then since the variances

and covariances of �{Y(ε)
j,n} and �{Y(ε)

j,n} are the same as for �(D̃(ε)
j,n) and �(D̃(ε)

j,n),
we use (C 2) and (C 3) to see that the variance of the estimated phase — since there
is now additive noise — is

var{φ̂j,n,l} ≈ 4σ2
ε

2j [A(D)
j,n,l]2

.

The estimated instantaneous frequency ν̂j,n,l is got by substituting the estimated
phase into (2.3). Hence its variance takes the form

var{ν̂j,n,l} =
1

4π2
cov

{
2∑

m=−2

rmφ̂j,n,l−m,

2∑
k=−2

rkφ̂j,n,l−k

}

=
1

4π2

2∑
m=−2

2∑
k=−2

rmrk cov
{

φ̂j,n,l−m, φ̂j,n,l−k

}
. (4.10)
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14 S. Olhede and A.T. Walden

Now, using (4.9), cov
{

φ̂j,n,l−m, φ̂j,n,l−k

}
can be expressed as

E
{[

�{Y(D)
j,n,l−m}�{Y(ε)

j,n,l−m} − �{Y(D)
j,n,l−m}�{Y(ε)

j,n,l−m}
]
×[

�{Y(D)
j,n,l−k}�{Y

(ε)
j,n,l−k} − �{Y(D)

j,n,l−k}�{Y
(ε)
j,n,l−k}

]} / {
[A(D)

j,n,l−m]2[A(D)
j,n,l−k]2

}
.

So cov
{

φ̂j,n,l−m, φ̂j,n,l−k

}
is approximately{

�{Y(D)
j,n,l−m}�{Y(D)

j,n,l−k}Ξj,n,m−k −�{Y(D)
j,n,l−m}�{Y(D)

j,n,l−k}Υj,n,m−k

−�{Y(D)
j,n,l−m}�{Y(D)

j,n,l−k}Υj,n,k−m + �{Y(D)
j,n,l−m}�{Y(D)

j,n,l−k}Ξj,n,m−k

} /
{

[A(D)
j,n,l−m]2[A(D)

j,n,l−k]2
}

,

where the symmetric autocovariance sequence, {Ξj,n,τ}, and approximate skew-
symmetric cross-covariance sequence, {Υj,n,τ}, are defined in (C 3) and (C 2). But

�{Y(D)
j,n,l−m}�{Y(D)

j,n,l−k} = A
(D)
j,n,l−mA

(D)
j,n,l−k cos(φ(D)

j,n,l−m) cos(φ(D)
j,n,l−k),

and similarly for the other terms. Our approximate form for cov
{

φ̂j,n,l−m, φ̂j,n,l−k

}
becomes[{

cos(φ(D)
j,n,l−m) cos(φ(D)

j,n,l−k) + sin(φ(D)
j,n,l−m) sin(φ(D)

j,n,l−k)
}

Ξj,n,m−k

+
{

sin(φ(D)
j,n,l−m) cos(φ(D)

j,n,l−k) − cos(φ(D)
j,n,l−m) sin(φ(D)

j,n,l−k)
}

Υj,n,m−k

] /
{

[A(D)
j,n,l−m]2[A(D)

j,n,l−k]2
}

=
[
{cos(φ(D)

j,n,l−m − φ
(D)
j,n,l−k)}Ξj,n,m−k + {sin(φ(D)

j,n,l−m − φ
(D)
j,n,l−k)}Υj,n,m−k

] /
{

[A(D)
j,n,l−m]2[A(D)

j,n,l−k]2
}

.

So, finally, our approximation for var{ν̂j,n,l} is given by

2∑
m,k=−2

rmrk

[
{cos(φ(D)

j,n,l−m−φ
(D)
j,n,l−k)}Ξj,n,m−k+{sin(φ

(D)
j,n,l−m−φ

(D)
j,n,l−k)}Υj,n,m−k

]
4π2A

(D)
j,n,l−mA

(D)
j,n,l−k

. (4.11)

When calculating this expression with real data, the sequences of amplitudes,
{A(D)

j,n,l}, and phases, {φ(D)
j,n,l}, are unknown, but these can be replaced by their

estimates.
In order to show the validity of the above variance expression, consider the linear

chirp xl = sin(a1l
2 + a2l), l = 0, . . . , 1023, with a1 = 0.02π/1024 and a2 = 0.36π.

This has an instantaneous frequency increasing from 0.18 to 0.2 over the 1024 time
points. White Gaussian noise was added to achieve a signal-to-noise variance ratio
of 10. A level J0 = 2 MODWPT was used; the signal lies in band n = 1, frequency
band [0.125, 0.25]. var{ν̂2,1,l} was calculated using (4.11) and the known amplitudes
{A(D)

2,1,l} and phases {φ(D)
2,1,l} and is shown in Figure 3(a). Figure 3(b) shows the mean
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standard deviation obtained at each time from 200 independent repeat simulations,
again using (4.11), but with the amplitudes {A(D)

2,1,l} and phases {φ(D)
2,1,l} estimated

from the noisy data of each simulation. Finally Figure 3(c) compares the result
shown in Figure 3(b) with the the empirical standard deviation computed from the
200 independent repeat simulations of the estimation of instantaneous frequency
at each time. It can be seen that there is good agreement between all three cases,
supporting the validity of expression (4.11).

When calculating (4.11) with real data, not only must the sequences of ampli-
tudes, {A(D)

j,n,l}, and phases, {φ(D)
j,n,l}, be estimated, but so too must the variance of

the white noise, σ2
ε , occurring in the formula for {Ξj,n,τ} in (C 3) and in the formula

for {Υj,n,τ} in (C 2). This variance can be estimated from the MODWPT details
in an appropriate signal-free level and band. For example for Figure 3(b) we used
j = J0 = 2 and n = 3, which corresponds to the highest frequency band. When
incorporating the demodulation and reverse demodulation steps we must proceed
with caution: energy moved out of the positive frequency region of time-frequency
into the negative region (via wrap-around) by the demodulation in step 2 of the
algorithm in section 2(e) will be eliminated in the creation of the new analytic vec-
tor in step 3. We assume of course that the demodulation is chosen so that signal
is not eliminated in this way, but some noise will inevitably be, so that when esti-
mating σ2

ε in this case, care should be taken not to choose MODWPT details in a
signal-free region where the noise has been affected by the demodulation.

5. Summary

We have described a flexible approach for the time-frequency analysis of multi-
component signals. It involves the use of analytic vectors and demodulation. The
demodulated analytic signal is projected onto the time-frequency plane so that, as
closely as possible, each component contributes exclusively to a different ‘tile’ in
a wavelet packet tiling of the time-frequency plane, and at any time the contri-
bution to each tile definitely comes from no more than one component. A single
reverse demodulation is then applied to all projected components. Two examples
of how to choose the form of the demodulation sequence sl were presented in some
detail within the context of the real and simulated data examples. Following the
above procedures, the instantaneous frequency of each component in each tile is
well-defined and may be calculated, followed by the Hilbert energy spectrum.

In order to better understand the effect of additive noise, the approximate vari-
ance of the estimated instantaneous frequency in any tile has been formulated by
starting with pure noise and studying its evolving covariance structure through
each step of the algorithm. The validity and practical utility of the resulting ex-
pression was demonstrated by comparing the theoretical standard deviation with
all parameters taken as known, with its mean over 200 simulations with unknown
quantities estimated from the noisy data, and with the empirical standard deviation
computed from 200 simulations of the estimation of instantaneous frequency.

The site http://www.ma.imperial.ac.uk/statistics/research/wavelets/
contains MATLAB code for our algorithm.

The authors wish to thank Curtis Condon, Ken White and Al Feng of the
Beckman Center at the University of Illinois for the bat data and for permission to
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Figure 3. (a) Theoretical standard deviation from (4.11), of estimated instantaneous fre-
quency. (b) The mean standard deviation from (4.11) from 200 independent repeat simula-
tions using quantities estimated from the noisy data. (c) Comparison of (b) (dashed) with
the empirical standard deviation computed from 200 independent repeat simulations of
the estimation of instantaneous frequency. Calculations used the MODWPT with J0 = 2
and 18-point Fejér-Korovkin wavelet filters.

use it in this paper. The authors thank the referees for their very helpful comments
leading to an improved exposition.

Appendix A.

We wish to show that the matrices Pj,n = W̃T
j,nW̃j,n and H commute,

From (2.1) we can write W̃j,n as

W̃j,n =



ũ◦
j,n,0 ũ◦

j,n,N−1 ũ◦
j,n,N−2 · · · ũ◦

j,n,3 ũ◦
j,n,2 ũ◦

j,n,1

ũ◦
j,n,1 ũ◦

j,n,0 ũ◦
j,n,N−1 · · · ũ◦

j,n,4 ũ◦
j,n,3 ũ◦

j,n,2

ũ◦
j,n,2 ũ◦

j,n,1 ũ◦
j,n,0 · · · ũ◦

j,n,5 ũ◦
j,n,4 ũ◦

j,n,3
...

...
... · · ·

...
...

...
ũ◦

j,n,N−2 ũ◦
j,n,N−3 ũ◦

j,n,N−4 · · · ũ◦
j,n,1 ũ◦

j,n,0 ũ◦
j,n,N−1

ũ◦
j,n,N−1 ũ◦

j,n,N−2 ũ◦
j,n,N−3 · · · ũ◦

j,n,2 ũ◦
j,n,1 ũ◦

j,n,0


; (A 1)

see e.g., Percival and Walden (2000, p. 171).
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To show that the matrices Pj,n = W̃T
j,nW̃j,n and H commute, we firstly define

the circular shift (orthonormal) transform matrix T . Then with x = [x0, . . . , xN−1]T

we have T x = [xN−1, x0, . . . , xN−2]T . Now T 2 ≡ T T etc, and we can write
H in (4.1) as H =

∑N−1
m=0 q◦mT m where q◦m = 0 for m even. Similarly W̃j in

(A 1) can be written as W̃j =
∑N−1

l=0 ũ◦
j,n,lT l and W̃T

j =
∑N−1

k=0 ũ◦
j,n,k(T k)T =∑N−1

k=0 ũ◦
j,n,k(T T )k =

∑N−1
k=0 ũ◦

j,n,kT −k, since T T = T −1 because T is orthonormal.
Hence

HW̃T
j,nW̃j,n =

N−1∑
m=0

N−1∑
k=0

N−1∑
l=0

q◦m ũ◦
j,n,k ũ◦

j,n,lT m−k+l

=
N−1∑
k=0

N−1∑
l=0

N−1∑
m=0

ũ◦
j,n,k ũ◦

j,n,l q◦mT −k+l+m = W̃T
j,nW̃j,nH,

as required.

Appendix B.

To show that HHT has the form stated in (4.5) it is sufficient to consider the dot
product of the first row of H with circularly shifted versions of other rows. Now
q◦ � q◦l ≡

∑N−1
n=0 q◦nq◦(n+l)modN and {q◦ � q◦l } ←→ {|Q◦

k|2 ≡ Q◦
k}. The inverse Fourier

transform relationship yields q◦ � q◦l = 1
N

∑N−1
k=0 Q◦

kei2πlk/N . But from (4.3),

Q◦
k =

{
0, k = 0, N

2 ,

1, k = 1, . . . , N
2 − 1, and k = N

2 + 1, . . . , N − 1.

We know that
1
N

N−1∑
k=0

ei2πlk/N =

{
1, l = 0,

0, l = 1, . . . , N − 1,

so that
N−1∑
n=0

q◦nq◦(n+l)modN +
1
N

(1 + [−1]l) =

{
1, l = 0,

0, l = 1, . . . , N − 1,

i.e.,
N−1∑
n=0

q◦nq◦(n+l)modN =


1 − 2

N , l = 0,

0, l = 1, 3, 5, . . . , N − 1,

− 2
N , l = 2, 4, 6, . . . , N − 2.

The form of HHT in (4.5) then follows immediately.

Appendix C.

Here we derive simple approximate expressions for the elements of var{�(D̃j,n)},
var{�(D̃j,n)}, and cov{�(D̃j,n),�(D̃j,n)}. Since Pj,n is real-valued we know that,

D̃j,n = Pj,nz = Pj,n�(z) + iPj,n�(z) = �(D̃j,n) + i�(D̃j,n).
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18 S. Olhede and A.T. Walden

We shall make use of the shorthand aj,n ≡ �(D̃j,n); bj,n ≡ �(D̃j,n). The vari-
ances and covariances of �(z) and �(z) are specified in (4.7) and (4.6). Now
consider cov{aj,n,l, bj,n,m}. Let rT be the row vector of Pj,n that yields aj,n,l

in aj,n = Pj,n�(z) and let vT be the row vector of Pj,n that yields bj,n,m in
bj,n = Pj,n�(z). Now cov{�(z),�(z)} = 4σ2

εHT — see equation (4.6) — and
since HT is a circulant matrix, HT = FHΛF , (e.g., Percival and Walden, 2000,
p. 441). The (l, m)th element of the orthonormal DFT (ODFT) matrix F is given
by exp(−i2πlm/N)/

√
N, for 0 ≤ l, m ≤ N − 1, ‘H’ denotes Hermitian transpose,

and Λ is a diagonal matrix with diagonal elements {Q◦
k : k = 0, . . . , N − 1}, the

DFT of the first row of HT . Then

cov{aj,n,l, bj,n,m} = 4σ2
ε r

THT v = 4σ2
ε r

TFHΛFv = 4σ2
ε (Fr)HΛFv.

Now Fr is the ODFT of r which is related to the DFT, say {Rk} of r via Fr =
(1/

√
N)[R0, . . . , RN−1]T , and similarly for Fv. Hence,

cov{aj,n,l, bj,n,m} =
4σ2

ε

N
[R∗

0, R
∗
1, . . . , R∗

N−1]


Q◦

0 0 · · · 0
0 Q◦

1 · · · 0
...

...
. . .

...
0 0 · · · Q◦

N−1




V0

V1

...
VN−1


=

4σ2
ε

N

N−1∑
k=0

R∗
kQ◦

kVk.

With U◦
j,n,k =

∑N−1
l=0 ũ◦

j,n,le
−i2πlk/N , we have R∗

k = |U◦
j,n,k|2ei2πkl/N and Vk =

|U◦
j,n,k|2e−i2πkm/N , so that

cov{aj,n,l, bj,n,m} =
4σ2

ε

N

N−1∑
k=0

|U◦
j,n,k|4Q◦

kei2πk(l−m)/N . (C 1)

But U◦
j,n,k = Uj,n( k

N ) where Uj,n(f) =
∑Lj−1

l=0 ũj,n,le
−i2πlf , where we recall that

{ũj,n,l} is a jth level and nth band MODWPT wavelet packet filter of length
Lj = (2j − 1)(L − 1) + 1 while ũ◦

j,n,l is its periodized version. Also Q◦
k = Q( k

N )
(Percival and Walden, 2000, p. 506) where Q(f) =

∑∞
l=−∞ qle

−i2πlf is the periodic
function

Q(f) = −i sgnp(f) =


0, if f = 0, 1/2;
−i, if 0 < f < 1/2;
i, if −1/2 < f < 0.

and {ql} is the non-periodized Hilbert transform filter given by

ql =
∫ 1/2

−1/2

−i sgnp(f)ei2πfldf =

{
2 sin2(lπ/2)

lπ , if l odd;
0, if l even,

so that q◦l =
∑∞

n=−∞ ql+nN . It then follows from (C 1) that cov{aj,n,l, bj,n,m} ≈
4σ2

ε

∫ 1/2

−1/2
|Uj,n(f)|4Q(f)ei2πf(l−m)df. But,

|Uj,n(f)|2 ≈
{

1, if f ∈
{
−

[
n+1
2j+1 , n

2j+1

)
∪

(
n

2j+1 , n+1
2j+1

]}
0, otherwise,
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so that

cov{aj,n,l, bj,n,m} ≈ 4σ2
ε

2π(l − m)

[
ei2πf(l−m)

∣∣∣−n/2j+1

−(n+1)/2j+1
− ei2πf(l−m)

∣∣∣(n+1)/2j+1

n/2j+1

]
=

{
0, l = m,

4σ2
ε
{cos[nπ(l−m)/2j ]−cos[(n+1)π(l−m)/2j ]}

[π(l−m)] , l �= m,
(C 2)

≡ Υj,n,l−m.

This is skew-symmetric in l and m.
We can determine cov{aj,n,l, aj,n,m} (or cov{bj,n,l, bj,n,m}) by noting from (4.7)

that the appropriate circulant matrix in this case is simply I; the DFT of its first
row is unity, so that

cov{aj,n,l, aj,n,m} ≈ 4σ2
ε

∫ 1/2

−1/2

|Uj,n(f)|4ei2πf(l−m)df

=

{
4σ2

ε /2j , l = m,

4σ2
ε
{sin[(n+1)π(l−m)/2j ]−sin[nπ(l−m)/2j ]}

[π(l−m)] , l �= m,
(C 3)

≡ Ξj,n,l−m.

with an identical result for cov{bj,n,l, bj,n,m}; note this is symmetric in l and m.
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