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Abstract— Rotary spectral analysis is a widely-used technique

for studying elliptical motions in ocean currents, wind, etc. Sta-

tistical properties (distribution, bias, confidence intervals) for

the estimated rotary coefficient, which measures the tendency

to rotate in a counterclockwise or clockwise manner, are derived

and applied to ocean current measurements at six depths in the

Labrador Sea.
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I. Introduction

The analysis of two-component real-valued time series, {Xt}
and {Yt}, with power spectra SX(f) and SY (f) respectively, can
be carried out by studying the real-valued vector time series or
by considering the complex-valued series Zt = Xt + iYt. The
latter approach is widely used in optics, quantum mechanics,
electro-magnetics and communications [25], and particularly in
physical sciences such as oceanography [6], meteorology [9], [12],
[19] and geophysics [2]. The decomposition of the complex-
valued series into polarized components, well-summarized in
[23], [25], provides the added value of this approach in these
sciences; in the frequency domain, the methodology is usually
referred to as ‘rotary spectral analysis.’

Another major practical advantage is that several useful
statistics are invariant to coordinate rotation under the rotary
scheme. One of these is the rotary coefficient which we shall
study in this article. Consider the following. A zero-mean co-
variance stationary complex-valued random sequence is harmo-
nizable, so

Zt =

∫ 1/2

−1/2

ei2πftdZ(f), (1)

where Z(f) is a random function of f with uncorrelated in-
crements, and zero mean. At frequencies f and −f the con-
tribution to Zt is dZ(f)ei2πft + dZ(−f)e−i2πft which is the
parametric equation of a random ellipse, comprising the addi-
tion of two oppositely rotating circular motions [6, pp. 428-9].
The counterclockwise component is considered to be rotating
with positive frequency, and vice versa. Depending on which
of the two components has the largest magnitude, the complex
vector rotates clockwise or counterclockwise with time, with its
tip tracing an ellipse. It is then natural to consider the rotary
coefficient, defined as [6, p. 431],[7],

ρ(f) =
SZ(f) − SZ(−f)

SZ(f) + SZ(−f)
, (2)

where SZ(·) is the power spectrum for the process {Zt} defined
via E{dZ(f)dZ∗(f ′)} = η(f − f ′) SZ(f)df, where η(·) is the
Dirac delta train with period 1 [4, p. 505]. The rotary coef-
ficient satisfies −1 ≤ ρ(f) ≤ 1 and measures the tendency to
rotate in a counterclockwise or clockwise manner; it provides an
objective means of quantifying the rotation associated with the
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asymmetry of the spectrum and is directly related to the ex-
pected ellipse shape [25, p. 210]. Let f > 0. Then if ρ(f) = +1,
(i.e., SZ(−f) = 0), then motion is all counterclockwise circu-
lar at that frequency, whereas if ρ(f) = −1, (i.e., SZ(f) = 0),
then motion is all clockwise circular at that frequency, and if
ρ(f) = 0, then there is rectilinear motion (unidirectional flow).

To immediately illustrate the very different physical insights
gained from the real-valued or complex-valued view of two-
component time series, we shall make use of ocean current speed
and direction time series recorded at a mooring in the Labrador
Sea [10], [11]. We associate the eastward (zonal) measurement of
current speed with {Xt} and the northward (meridional) mea-

surement with {Yt}. Fig. 1(a) shows estimated spectra ŜX(f)

(thin line) and ŜY (f) (thick line) for {Xt} and {Yt}, respec-
tively, at a depth of 110m. Since the series are real-valued the
spectra are symmetric about f = 0 and only positive frequencies
are shown. Fig. 1(b) shows estimated spectra ŜZ(f) (thin line)

and ŜZ(−f) (thick line) for positive frequencies. (The spec-
tra are not symmetric in the complex case, and we have folded
the negative frequency axis about f = 0 and overplotted it on
the positive frequency axis.) In both plots the vertical dashed
line marks the semi-diurnal tidal frequency: the line at this fre-
quency has been estimated and removed ([20, sec. 10.11]) so
that the spectra are for the residual current after tide removal.
We see that although there are small differences between ŜX(f)

(thin line) and ŜY (f), there is no strong systematic effect, par-
ticularly around the semi-diurnal tidal frequency. By way of
contrast, using the rotary approach, we see a marked system-
atic effect: the clockwise spectrum, ŜZ(−f), f > 0, dominates

the counterclockwise spectrum, ŜZ(f), f > 0, over a band of
frequencies around the semi-diurnal tidal frequency — an effect
of much interest to oceanographers [6], [7], [21], [26], [29]; we
shall return to this data in Section IV.

While there has been widespread use of the rotary coefficient
[2], [6], [7], [9], [12], [19], [21], [26], [29], a statistical analysis
of its estimator, allowing, for example, the setting of confidence
intervals, has not yet been undertaken, and is the purpose of
this correspondence.

In Section II we give the background to the construction of
the rotary coefficient and the form of its estimator. Section III
develops the probability density function (PDF) of the estima-
tor and shows that the associated confidence interval depends on
a nuisance parameter; however when this is suitably estimated
and debiased the resulting coverage probabilities are very accu-
rate. The forms of the bias and mean squared error of the esti-
mator are also illustrated. In Section IV the statistical method-
ology is applied to ocean current recordings at six depths in
the Labrador Sea, where the local inertial frequency is clearly
identified.

II. Basics

A. Background

Without loss of generality we assume the complex-valued
random process {Zt, t ∈ Z} to have a mean of zero. Let
us define the autocovariance between Zt+τ and Zt at lag τ
in the usual way as cov{Zt+τ , Zt} ≡ E{Zt+τZ∗

t }, (where ∗

denotes complex conjugate), and let us also define the rela-
tion [22] between Zt+τ and Zt at lag τ as rel{Zt+τ , Zt} ≡
E{Zt+τZt} = cov{Zt+τ , Z∗

t }. {Zt} is said to be second-order
stationary (SOS) iff cov{Zt+τ , Zt} and rel{Zt+τ , Zt} are func-
tions of τ only [22], in which case we obtain the autocovariance
sequence {sZ,τ , τ ∈ Z}, with sZ,τ ≡ cov{Zt+τ , Zt}, and the rela-
tion sequence {rZ,τ , τ ∈ Z}, with rZ,τ = rel{Zt+τ , Zt}. We note
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Fig. 1. Analysis of Labrador Sea data for depth of 110m. (a) Estimated

spectra of eastward (thin line) and northward (thick line) current veloc-

ities. (b) Estimated counterclockwise spectra (thin line) and clockwise

spectra (thick line) for complex-valued currents (eastward = real part,

northward = imaginary part). For both plots the semi-diurnal tide, (fre-

quency shown by dashed line), has been estimated and removed from the

spectra. The role of the vertical dotted lines in plot (b) is explained in

the text.

that sZ,τ = s∗Z,−τ , and rZ,τ = rZ,−τ , i.e., the autocovariance
sequence is complex Hermitian, while the relation sequence is
complex symmetric.

Let {Ut = [Zt, Z
∗
t ]T , t ∈ Z}, then the Fourier transform

SU(f) say, of sU,τ ≡ E{Ut+τUH
t }, is

SU(f) = ∆t

∞∑
τ=−∞

[
sZ,τ rZ,τ

r∗Z,τ s∗Z,τ

]
e−i2πfτ∆t

=

[
SZ(f) RZ(f)

R∗
Z(−f) SZ(−f)

]
, (3)

where ∆t is the sampling interval. The Fourier transform of
{sZ,τ}, namely SZ(f), is the power spectrum of {Zt} and is
real-valued and non-negative. The Fourier transform of {rZ,τ},
RZ(f), is complex symmetric. Since rZ,τ = cov{Zt+τ , Z∗

t },
RZ(f) is actually the cross-spectrum of {Zt} and {Z∗

t }, and
hence we call RZ(f) the relational cross-spectrum. Of course
both SZ(f) and RZ(f) are periodic with period unity. The
integral of SZ(f) over a period is the process variance, σ2

Z .
Now define {Vt = [Xt, Yt]

T , t ∈ Z}. For SOS complex-valued
processes the real-valued series {Xt} and {Yt} are jointly sta-
tionary stochastic processes, and let sV ,τ ≡ E{Vt+τV T

t }. Since
Ut = TVt, with

T =

[
1 i
1 −i

]
,

we have that

sU,τ = TsV ,τT H . (4)

The spectral matrix for {Vt} is given by

SV (f) = ∆t

∞∑
τ=−∞

sV ,τe−i2πfτ∆t =

[
SXX(f) SXY (f)
SY X(f) SY Y (f)

]
,

where SXX(f) is the spectrum of {Xt} and SXY (f) is the cross-
spectrum for {Xt} and {Yt}. So from (4),

SU(f) = TSV (f)T H , (5)

from which we find in particular that [25, p. 199]

SZ(f) = SXX(f) + SY Y (f) + 2Im{SXY (f)}, (6)

where Im{·} denotes imaginary part.

B. Two Important Properties of the Rotary Coefficient

Firstly, the rotary coefficient, defined in (2) is invariant to
coordinate rotation [17]. To see this note that if we apply a
rotation to Vt we get[

Xθ
t

Y θ
t

]
=

[
cos θ sin θ
− sin θ cos θ

] [
Xt

Yt

]
.

so that Zθ
t = Xθ

t + iY θ
t = Zte

iθ and from (1),

Zθ
t =

∫ 1/2

−1/2

ei2πftdZ(f)eiθ =

∫ 1/2

−1/2

ei2πftdZθ(f), (7)

where dZθ(f) = dZ(f)eiθ. Then E{|dZθ(f)|2} = SZ(f)df, and
E{|dZθ(−f)|2} = SZ(−f)df, so that the rotary coefficient is
unchanged.

Secondly, since SXY (−f) = S∗
XY (f) it follows from (6) that

ρ(f) can also be written as

ρ(f) = 2Im{SXY (f)}/[SXX(f) + SY Y (f)].

So rectilinear motion, for which ρ(f) = 0, is equivalent to
Im{SXY (f)} = 0, and a test for rectilinear motion at fre-
quency f is equivalent to a test for real structure, for SV (f),
i.e., whether SV (f) = Re{SV (f)}+iIm{SV (f)} is real-valued.
For Gaussian processes the likelihood ratio criterion for testing
H0 : Im{SV (f)} = 0 against H1 : Im{SV (f)} �= 0 is given by

Tr(f) = det{ŜV (f)}/ det{Re{ŜV (f)}}, (8)

(e.g., [5]), where ŜV (f) estimates SV (f). The distribution of
Tr(f) is beta with parameters K − 1 and 1/2, with PDF

fTr (t) =
1

B(K − 1, 1/2)
(1 − t)−1/2tK−2, 0 < t < 1. (9)

The hypothesis is rejected for too small values of Tr(f).

C. A Rotary Coefficient Estimator

We use multitaper spectral estimation (e.g., [20]) employing
K tapers. We consider tapers which correspond to sampling
K rescaled bounded taper functions, each with support on the
same finite-length interval of the real line, with the taper func-
tions being orthonormal on this finite interval. The sine tapers
(e.g., [28]) used here are of this form.

Form the product hk,tUt of the tth value of the kth real valued
taper, k = 0, 1, . . . , K − 1, with the tth value of the sequence,
Ut and compute the Fourier transform:

JU,k(f) = ∆t
1/2

N−1∑
t=0

hk,tUte
−i2πft∆t

= T∆t
1/2

N−1∑
t=0

hk,tVte
−i2πft∆t

= TJV ,k(f) = [JZ,k(f), J∗
Z,k(−f)]T (10)
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where JZ,k(f) = ∆
1/2
t

∑N−1
t=0 hk,tZte

−i2πft∆t . The multitaper
estimator of SU(f) is [20]

ŜU(f) =
1

K

K−1∑
k=0

JU,k(f)JH
U,k(f) =

[
ŜZ(f) R̂Z(f)

R̂∗
Z(f) ŜZ(−f)

]
. (11)

The number of tapers, K, is the number of complex degrees of
freedom of the estimator. Then define,

Â(f) ≡ ŜZ(−f)

ŜZ(f)
=

∑K−1
k=0 |J∗

Z,k(−f)|2∑K−1
k=0 |JZ,k(f)|2

. (12)

The estimator of the rotary coefficient is

ρ̂(f) =
ŜZ(f) − ŜZ(−f)

ŜZ(f) + ŜZ(−f)
=

1 − Â(f)

1 + Â(f)
. (13)

We shall also make use of the estimator of the ‘conjugate coher-
ence,’ i.e., the ordinary coherence between {Zt} and {Z∗

t } :

γ̂2
∗(f) =

|R̂Z(f)|2

ŜZ(f)ŜZ(−f)
. (14)

Assume that {Vt} is a bivariate real-valued Gaussian process,
then from [4, p. 235], given our taper properties, we can deduce
that, asymptotically as N → ∞, {JV ,k(f), k = 0, . . . , K−1} are
distributed independently and identically with a complex bivari-
ate Gaussian distribution with mean 0 and covariance matrix
SV (f), which we write

JV ,k(f)
d
= NC

2 (0, SV (f)), 0 < |f | < fN , (15)

where fN = 1/(2∆t), the Nyquist frequency. (In practice, the
frequency band within which the overall spectral window due
to tapering [28] is concentrated, must be narrow enough that
the components of SV (f) are essentially constant across it.)

Since JU,k(f) = TJV ,k(f), and T ∈ C2×2, we know that

JU,k(f)
d
= NC

2 (0, TSV (f)T H), 0 < |f | < fN , (16)

[1, p. 23], so that, from (5),

JU,k(f)
d
= NC

2 (0, SU(f)), 0 < |f | < fN . (17)

For finite N, the independence of the JV ,k(f) and the result
(17) can only be justified for WN ≤ |f | ≤ fN − WN , where
[−WN , WN ] is the extent of the spectral window induced by
tapering [27]; for sine tapers

WN = (K + 1)/[2(N + 1)∆t], (18)

(e.g., [28]), which decreases to zero as N → ∞ for a fixed K.

III. Statistical properties of rotary coefficient
estimator

A. Distribution of Rotary Coefficient Estimator

Let Wk = [Wk,1, Wk,2]
T , k = 0, . . . , K − 1, be a size K ran-

dom sample of two-dimensional complex Gaussian vectors, each
NC

2 (0,Σ). Let W1 =
∑K−1

k=0 |Wk,1|2 and W2 =
∑K−1

k=0 |Wk,2|2.
For 0 < |f | < fN in the asymptotic case, and WN ≤ |f | ≤
fN − WN , for finite N, the ratio Â(f) in (12) has the same
statistical properties as W2/W1, with SU(f) replacing Σ. Then

[16, p. 92] the PDF of Â(f) is given by, for a ≥ 0,

fÂ(a) =
aK−1(a + q)qK(1 − γ2

∗)K

B(K, K)[(a + q)2 − 4aqγ2∗ ]K+(1/2)
, (19)

where B(K, K) = Γ2(K)/Γ(2K) is the beta function, q =
SZ(−f)/SZ(f) = (1 − ρ(f))/(1 + ρ(f)) is the ratio of the true
variances, and γ2

∗ = |RZ(f)|2/[SZ(f)SZ(−f)] is the conjugate
coherence at frequency f. (For brevity we have suppressed the

frequency dependence of Â, q and γ2
∗ in (19). In what follows

we will often suppress explicit frequency dependence where it is
understood.) This PDF can be rewritten as

fÂ(a) =
(1 + [q/a]) (q/a)K (1 − γ2

∗)K

aB(K, K)[(1 − [q/a])2 + 4 (q/a) (1 − γ2∗)]K+(1/2)
.

(20)

Now, ρ̂ = (1 − Â)/(1 + Â) ⇒ Â = (1 − ρ̂)/(1 + ρ̂). So, the PDF
of ρ̂ is

fρ̂(x) = [2/(1 + x)2]fÂ ([1 − x]/[1 + x]) . (21)

Then (20) and (21) combine to give

fρ̂(x) =
2(1 + yρx)yK

ρx(1 − γ2
∗)K

(1 − x2)B(K, K)[(1 − yρx)2 + 4yρx(1 − γ2∗)]K+(1/2)

(22)

where yρx = [(1 − ρ)(1 + x)]/[(1 + ρ)(1 − x)], and |x|, |ρ|, γ2
∗ <

1. Note that a more complete way of denoting the PDF is
fρ̂(x; K, ρ, γ2

∗), which explicitly shows the dependence on the
degrees of freedom, K, and the two parameters, firstly ρ, the
true value of the rotary coefficient, and secondly γ2

∗ , the con-
jugate coherence. We will sometimes use this longer notation
where useful.

Now, let P (f) denote the degree of polarization of the
process {Ut} (see e.g., [15], [25]). Then, P 2(f) = 1 −
4[det{SU(f)}/tr2{SU(f)}], (e.g., [25, p. 212]) where det{·} and
tr{·} denote determinant and trace, respectively. But,

det{SU(f)}
tr2{SU(f)} =

SZ(f)SZ(−f) − |RZ(f)|2
[SZ(f) + SZ(−f)]2

.

From this it follows readily that [1 − ρ2(f)][1 − γ2
∗(f)] =

1 − P 2(f). So given any two of ρ2(f), γ2
∗(f), P 2(f), the third

is determined. It also follows that P 2(f) ≥ ρ2(f) and P 2(f) ≥
γ2
∗(f). Because of these inequalities, and the fact that the true

rotary coefficient ρ(f) and the conjugate coherence γ2
∗(f) de-

termine P 2(f), we know that ρ(f) and γ2
∗(f) should be chosen

as the ‘free’ parameters for the PDF of the rotary coefficient
estimator, ρ̂(f).

Fig. 2 shows the PDF of the rotary coefficient estimator for
K = 10 and different values of ρ and γ2

∗ . The PDF for negative
values of ρ is the reflection around x = 0 of the PDF for the
corresponding absolute value. This can be seen from the fact
that when ρ and x are simultaneously negated, yρx → 1/yρx,
but (22) is invariant to such an inversion of yρx, and (1−x2) in
(22) is invariant to a change in the sign of x.

B. Confidence Intervals for ρ(f)

Choose a fixed value of ρ. If we define points aα/2(ρ)
and a1−α/2(ρ) such that Fρ̂(aα/2(ρ); K, ρ, γ2

∗) = α/2 and
Fρ(a1−α/2(ρ); K, ρ, γ2

∗) = 1 − α/2, where Fρ̂(x; K, ρ, γ2
∗) is the

distribution function corresponding to the PDF fρ̂(x; K, ρ, γ2
∗),

then

Pr[aα/2(ρ) ≤ ρ̂ ≤ a1−α/2(ρ)] = 1 − α. (23)

By taking α = 0.05, 95% confidence regions defined in this
way are given in Figs. 3(a) and (b) for K = 10 and K = 20,
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Fig. 3. 95% confidence regions for ρ when γ2
∗ = 0.5 and (a) K = 10 and

(b) K = 20. The dashed and dotted lines are explained in the text.

respectively, when γ2
∗ = 0.5. The dotted lines in Fig. 3(a) show

the interval (23) for a given value of ρ.
Confidence intervals for ρ are found by using the reverse strat-

egy — see the dashed lines in Figs. 3(a) and (b). Given an es-
timate ρ̂, here ρ̂ = 0.7, we draw a horizontal dashed line across
the plot at that value; the intersection of this line with a1−α/2

at ρ1 say, and with aα/2 at ρ2 say, defines a 95% confidence
interval (α = 0.05) for ρ as [ρ1, ρ2], which depends on the K
used. The resulting 95% confidence intervals for ρ are [0.50,
0.83] for K = 10 and and [0.57, 0.80] for K = 20 when ρ̂ = 0.7;
as expected the interval is narrower with increasing number of
complex degrees of freedom K.

Denote the 100(1 − α)% confidence interval more fully by

[ρ1(ρ̂; α, K, γ2
∗), ρ2(ρ̂; α, K, γ2

∗)]. (24)

The interval is random since it depends on ρ̂, and it de-
pends on the known quantities K and α, and the so-called
‘nuisance parameter’ γ2

∗ . Computationally, given an estimate
ρ̂ of ρ, the right end of the interval, ρ2(ρ̂; α, K, γ2

∗), is the
value of ρ such that Fρ̂(ρ̂; K, ρ, γ2

∗) − α/2 = 0, which can
be found simply using any standard zero-finding algorithm.
ρ1(ρ̂; α, K, γ2

∗) is likewise found by finding the value of ρ for
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Fig. 4. 95% confidence regions for ρ when K = 10 and (a) γ2
∗ = 0.1 and

(b) γ2
∗ = 0.7.

which Fρ̂(ρ̂; K, ρ, γ2
∗)− (1−α/2) = 0. As no analytical form for

Fρ̂(ρ̂; K, ρ, γ2
∗) is forthcoming, it is necessary to calculate it by

numerical integration of the PDF.
Fig. 4 shows the form of the 95% confidence regions for

K = 10 and γ2
∗ values of 0.1 and 0.7. The region decreases

in size with increasing γ2
∗ . So from Figs. 3 and 4 we see that

confidence intervals for ρ narrow as K increases, and also as γ2
∗

increases. The latter is explained by the fact that increasing γ2
∗

corresponds to increasing P 2.

C. Simulated coverage intervals

The confidence interval (24) assumes knowledge of γ2
∗ , but in

practice this will not be known. We carried out a simulation
study to look at the coverage probability when γ2

∗ is first esti-
mated, then debiased, and then included in (24) in place of the
unknown true value of γ2

∗ .
Three different matrices playing the role of SU(f) in (3) were

used in the simulations:

S
(1)
U =

[
5 −2 + 2i

−2 − 2i 2

]
; S

(2)
U =

[
10 7 + i

7 − i 10

]
;

and

S
(3)
U =

[
2 1 + i

1 − i 5

]
,

for which ρ = 0.43, γ2
∗ = 0.8, for the first, ρ = 0, γ2

∗ = 0.5, for
the second, and ρ = −0.43, γ2

∗ = 0.2, for the third. For each
model matrix we simulated bivariate complex Gaussian vectors
as in (17) using the method in [14, sec. V] and then combined
them as in (11). K was chosen as 10 and 20. For each model

matrix 5000 independent realizations of ŜU were produced, and
consequently 5000 realizations of ρ̂ from (12) and γ̂2

∗ from (14).
The estimates γ̂2

∗ were debiased in two ways. Firstly an unbiased
estimate, γ̃2

∗ , was obtained as

γ̃2
∗ = 1 − (1 − γ̂2

∗) 2F1(1, 1; K; 1 − γ̂2
∗), (25)

(e.g., [13, eqn. 24]), where 2F1(a, b; c; y) is the hypergeometric
function with 2 and 1 parameters and argument y. A second
debiased estimate, γ̄2

∗ , was found using the simpler formula [3]

γ̄2
∗ = [Kγ̂2

∗ − 1]/[K − 1]. (26)

Since both these debiased estimates can be negative, they must
be modified to max{0, γ̃2

∗} and max{0, γ̄2
∗}, respectively.

The simulation results are given in Table I. We see that the
coverage probabilities closely match the nominal levels whether
the exact conjugate coherence is used to define (24), or whether
either of the debiased estimates are used.
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K Level Model Conj. coherence
γ2
∗ γ̃2

∗ γ̄2
∗

10 90% 1 90.1 88.3 89.8
2 89.9 88.4 89.3
3 89.5 88.8 89.1

95% 1 95.2 94.6 95.4
2 95.3 94.4 95.0
3 95.3 94.8 95.0

20 90% 1 90.3 89.9 90.5
2 90.1 89.3 89.6
3 90.4 89.9 90.1

95% 1 95.1 94.9 95.3
2 94.7 94.6 94.8
3 95.1 95.2 95.3

TABLE I

Percentage of simulated random intervals containing ρ when

conjugate coherence is known or estimated.
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Fig. 5. Bias and mean squared errors (MSE). (a) bias when γ2
∗ = 0.1,

(b) bias when γ2
∗ = 0.7, (c) MSE when γ2

∗ = 0.1, and (d) MSE when

γ2
∗ = 0.7. Solid lines are for K = 10 and dashed lines for K = 20.

The fact that we get close to nominal coverage when the con-
jugate coherence nuisance parameter is not known but rather
is estimated and debiased is the key to making the calculation
of confidence intervals for the rotary coefficient of great practi-
cal utility in the many scientific studies in which it is routinely
used.

D. Bias and mean squared error

Two important properties of ρ̂, namely the bias, E{ρ̂} − ρ,
and the mean squared error (MSE), E{(ρ̂− ρ)2} (variance plus
squared bias), are shown in Fig. 5. Values were readily com-
puted from moments derived from (22) using numerical integra-
tion. We see that bias is positive for negative values of ρ and
vice versa. Mean squared error is symmetric in ρ, and largest
at ρ = 0. Both bias and MSE decrease with increasing K and
increasing γ2

∗ .

IV. Data Analysis

Our example in the Introduction made use of ocean current
speed and direction time series for one depth from a set of six
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Fig. 6. Estimated rotary coefficient (solid dot) and corresponding 95%

confidence intervals (solid horizontal bars) for the six observation depths

at the frequencies (c/hr) (a) 0.0518, (b) 0.0697, (c) 0.0911 and (d) 0.1095.

Dotted lines delineate estimated change with depth.

(110, 760, 1260, 1760, 2510 and 3476m) recorded at a mooring
in the Labrador Sea [10], [11]. We used N = 1600 observations
with a sampling interval of ∆t = 1hr. In the spectral analysis
K = 10 sine tapers were applied. In this section we shall show
the utility of the statistical results in this correspondence in
providing insights into the nature of the ocean data. Since WN

in (18) is 0.0034c/hr, the validity range WN ≤ |f | ≤ fN −
WN for our statistical results for a finite-N sample is given by
0.0034 ≤ |f | ≤ 0.4966, hardly different to the asymptotic range
0 < |f | < 0.5.

Of great interest to oceanographers are deep ocean motions
well away from boundaries, especially in the internal wave fre-
quency band between about 10−2 and 1c/hr. Fig. 1 covers this
band, fairly central to which is the semi-diurnal tidal frequency
(dashed). At a slightly lower frequency than the main tide will
be the local inertial frequency which is latitude dependent.

Fig. 6 shows the estimated rotary coefficient (solid dot) and
corresponding 95% confidence intervals (solid horizontal bars)
for the six observation depths at the frequencies (c/hr) (a)
0.0518, (b) 0.0697, (c) 0.0911 and (d) 0.1095. These are the
frequencies marked by the dotted lines in Fig. 1(b).

Starting with Fig. 6(b) at f = 0.0697c/hr, we see firstly that
here the rotary coefficient is very close to −1 at all depths, (the
confidence intervals are very narrow). This is what would be
expected as an ideal theoretical outcome at the local inertial fre-
quency, which is thus identified, suggesting that the statistical
methodology has performed impressively well. At the frequency
f = 0.0911c/hr, slightly higher than the tidal frequency, the ro-
tary coefficient is more uncertain, Fig. 6(c), but does not appear
to deviate greatly from about −0.8. For the lowest and highest
of the four frequencies, Figs. 6(a) and (d) the most notable
feature is the large deviations towards 0 at shallow depths.

In Fig. 7(a) we have plotted the estimated rotary coefficient
for the depth 760m, along with 95% confidence intervals, at a
regular (but coarse for clarity) frequency spacing. We notice
that the confidence intervals are only narrow for frequencies
either side of, but not too near the main tidal frequency. In
Fig. 7(b) the heavy bars show the frequency ranges, on a finer
frequency grid, at which the null hypothesis of rectilinear flow
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Fig. 7. Variation of estimated rotary coefficient as a function of frequency

at depth 760m. (a) showing 95% confidence intervals (solid vertical bars)

at a regular frequency spacing, (b) showing the frequencies at which the

null hypothesis of rectilinear flow is not rejected (heavy bars). The semi-

diurnal tidal frequency is shown by the vertical dashed line.

is not rejected at the 5% level. (The statistic (8) was used
with distribution (9).) We see that these results are entirely
consistent with the confidence intervals in Fig. 7(a); where the
confidence interval includes zero the rectilinear flow hypothesis
is not rejected, and vice versa.

V. Concluding comments

We have derived the basic statistical properties for the esti-
mated rotary coefficient. These depend on the true value of the
rotary coefficient, and the conjugate coherence γ2

∗ , a nuisance
parameter. Fortunately when the latter is estimated and debi-
ased constructed confidence intervals maintain appropriate cov-
erage probabilities, so such confidence intervals have practical
utility as illustrated by the Labrador Sea current data analysis.
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