267 research outputs found

    Experimental and theoretical study of the adsorption of fumaramide [2]rotaxane on Au(111) and Ag(111) surfaces

    Get PDF
    Thin films of fumaramide [2] rotaxane, a mechanically interlocked molecule composed of a macrocycle and a thread in a "bead and thread" configuration, were prepared by vapor deposition on both Ag(111) and Au(111) substrates. X-ray photoelectron spectroscopy (XPS) and high-resolution electron-energy-loss spectroscopy were used to characterize monolayer and bulklike multilayer films. XPS determination of the relative amounts of carbon, nitrogen, and oxygen indicates that the molecule adsorbs intact. On both metal surfaces, molecules in the first adsorbed layer show an additional component in the C 1s XPS line attributed to chemisorption via amide groups. Molecular-dynamics simulation indicates that the molecule orients two of its eight phenyl rings, one from the macrocycle and one from the thread, in a parallel bonding geometry with respect to the metal surfaces, leaving three amide groups very close to the substrate. In the case of fumaramide [2]rotaxane adsorption on Au(111), the presence of certain out-of-plane phenyl ring and Au-O vibrational modes points to such bonding and a preferential molecular orientation. The theoretical and experimental results imply that the three-dimensional intermolecular configuration permits chemisorption at low coverage to be driven by interactions between the three amide functions of fumaramide [2]rotaxane and the Ag(111) or Au(111) surface. (c) 2005 American Institute of Physics.</p

    Retinoic acid/calcite micro-carriers inserted in fibrin scaffolds modulate neuronal cell differentiation

    Get PDF
    The controlled release of cell differentiating agents is crucial in many aspects of regenerative medicine. Here we propose the use of hybrid calcite single crystals as micro-carriers for the controlled and localized release of retinoic acid, which is entrapped within the crystalline lattice. The release of retinoic acid occurs only in the proximity of stem cells, upon dissolution of the calcite hybrid crystals that are dispersed in the fibrin scaffold. These hybrid crystals provide a sustained dosage of the entrapped agent. The environment provided by this composite scaffold enables differentiation towards neuronal cells that form a three-dimensional neuronal network

    No evidence of sars-cov-2 circulation in rome (Italy) during the pre-pandemic period. Results of a retrospective surveillance

    Get PDF
    In March 2020, the World Health Organization (WHO) declared that the COVID-19 outbreak recorded over the previous months could be characterized as a pandemic. The first known Italian SARS-CoV-2 positive case was reported on 21 February. In some countries, cases of suspected “COVID-19-like pneumonia” had been reported earlier than those officially accepted by health authorities. This has led many investigators to check preserved biological or environmental samples to see whether the virus was detectable on dates prior to those officially stated. With regard to Italy, the results of a microbiological screening in sewage samples collected between the end of February and the beginning of April 2020 from wastewaters in Milan (Northern Italy) and Rome (Central Italy) showed presence of SARS-CoV-2. In the present study, we evaluated, by means of a standardized diagnostic method, the SARS-CoV-2 infection prevalence amongst patients affected by severe acute respiratory syndrome (SARI) in an academic hospital located in Central Italy during the period of 1 November 2019–1 March 2020. Overall, the number of emergency room (ER) visits during the investigated period was 13,843. Of these, 1208 had an influenza-like syndrome, but only 166 matched the definition of SARI as stated in the study protocol. A total of 52 SARI cases were laboratory confirmed as influenza: 26 as a type B virus, 25 as a type A, and 1 as both viruses. Although about 17% of the total sample had laboratory or radiological data compatible with COVID-19, all the nasopharyngeal swabs stored underwent SARS-CoV-2 RT-PCR and tested negative. Based on our result, it is confirmed that the COVID-19 pandemic spread did not start prior to the “official” onset in central Italy. Routine monitoring of SARI causative agents at the local level is critical for reporting epidemiologic and etiologic trends that may differ from one country to another and also among different influenza seasons. This has a practical impact on prevention and control strategies

    Hydroxyl vacancies in single-walled aluminosilicate and aluminogermanate nanotubes

    Full text link
    We report the first theoretical study of hydroxyl vacancies in aluminosilicate and aluminogermanate single-walled metal-oxide nanotubes. The defects are modeled on both sides of the tube walls and lead to occupied and empty states in the band gap which are highly localized both in energy and in real space. We find different magnetization states depending on both the chemical composition and the specific side with respect to the tube cavity. The defect-induced perturbations to the pristine electronic structure are related to the electrostatic polarization across the tube walls and the ensuing change in Br{\o}nsted acid-base reactivity. Finally, the capacity to counterbalance local charge accumulations, a characteristic feature of these systems, is discussed in view of their potential application as insulating coatings for one-dimensional conducting nanodevices.Comment: manuscript: 4 pages, 4 figure

    A Bio-Conjugated Fullerene as a Subcellular-Targeted and Multifaceted Phototheranostic Agent

    Get PDF
    Fullerenes are candidates for theranostic applications because of their high photodynamic activity and intrinsic multimodal imaging contrast. However, fullerenes suffer from low solubility in aqueous media, poor biocompatibility, cell toxicity, and a tendency to aggregate. C70@lysozyme is introduced herein as a novel bioconjugate that is harmless to a cellular environment, yet is also photoactive and has excellent optical and optoacoustic contrast for tracking cellular uptake and intracellular localization. The formation, water-solubility, photoactivity, and unperturbed structure of C70@lysozyme are confirmed using UV-visible and 2D 1H, 15N NMR spectroscopy. The excellent imaging contrast of C70@lysozyme in optoacoustic and third harmonic generation microscopy is exploited to monitor its uptake in HeLa cells and lysosomal trafficking. Last, the photoactivity of C70@lysozyme and its ability to initiate cell death by means of singlet oxygen (1O2) production upon exposure to low levels of white light irradiation is demonstrated. This study introduces C70@lysozyme and other fullerene-protein conjugates as potential candidates for theranostic applications

    Macroscopic transport by synthetic molecular machines

    Get PDF
    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.

    New insights into the composition of Indian yellow and its use in a Rajasthani wall painting

    Get PDF
    The widespread occurrence of Indian yellow on an early 17th-century wall painting in Rajasthan (India) was initially indicated by photo-induced luminescence imaging of the painted scheme in the Badal Mahal within the Garh Palace (Bundi). The presence of the organic pigment was subsequently confirmed by HPLC-ESI-Q-ToF. The results of a multi-analytical study focusing on two samples from the wall painting and two reference pigments from the British Museum and National Gallery (London, UK) are presented here. The research focused on the possible causes for the different yellow/orange hues observed in the painting samples. Analysis of cross-sections with SEM-EDS revealed similar elemental composition for the Indian yellow paint layers, but different underlying layers, indicating a variation in painting technique. The composition of the Indian yellow samples was investigated by HPLC-ESI-Q-ToF with both positive and negative ionisation. In addition to euxanthic acid and euxanthone, a sulphonate derivative of euxanthone was found to be present in all samples, while relative amounts of the three components varied. Flavonoid molecules—morin, kaempferol, quercetin and luteolin—were also detected in one wall painting sample (characterised by a brighter yellow colour) and not in the sample that was more orange. The optical properties of the samples were characterised by photoluminescence spectroscopy in both solid state and aqueous solution. The contribution of each organic compound to the emission spectrum of Indian yellow in solution was also investigated by time-dependent density functional theory (TDDFT) calculations. Small differences in terms of spectral shift were observed in solid state experiments, but not in solution, suggesting that the spectral differences in the emission spectrum were mostly due to different contributions of solid-state arrangements, most likely driven by π-π stacking and/or hydrogen bonds. However, a slight difference at high energies was observed in the spectra acquired in solution and TDDFT calculations permitted this to be ascribed to the different chemical composition of the samples. Time-resolved measurements highlighted di-exponential lifetime decays, confirming the presence of at least two molecular arrangements. Py(HMDS)-GC–MS was also used for the first time to characterise Indian yellow and the trimethylsilyl derivative of euxanthone was identified in the pyrograms, demonstrating it to be a suitable marker for the identification of the pigment in complex historic samples

    Optical and theoretical investigation of Indian yellow (euxanthic acid and euxanthone)

    Get PDF
    The optical properties (photophysics and imaging) of Indian yellow were investigated both in solid state and in aqueous solution and correlated with its chemical composition. The analyses were corroborated by a theoretical study carried out on the different xanthone derivatives that comprise the pigment under investigation, both as isolated molecules and in a polar (protic) solvent, to help the assignment of the excited states involved in the photo-induced process. Knowledge of its relatively high photoluminescence quantum yield (PLQY 0.6%), excitation and emission spectra and lifetime decays enhances the potential for reliable identification using non-invasive photo-induced luminescence imaging techniques. New insights into the chemical composition of the pigment, such as the identification of a sulphonate derivative of euxanthone, and its extensive occurrence on a 17th-century Indian wall painting are also reported for the first time in this study
    • 

    corecore