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Abstract 

Recent results of X-Ray crystallography have provided important information for 
functional studies of membrane ion channels based on computer simulations. 
Because of the large number of atoms that constitute the channel proteins, it is 
prohibitive to approach functional studies using molecular dynamic methods. To 
overcome the current computational limit we propose a novel approach based on 
the Poisson, Nernst, Planck electrodiffusion theory. The proposed numerical 
method allows the quick computation of ion flux through the channel, starting 
from its 3D structure. We applied the method to the KcsA potassium channel 
obtaining a good accordance with the experimental data. 
Keywords:  membrane protein, computer simulation, ion fluxes. 

1 Introduction 

Ion channels are protein molecules embedded in the lipid bilayer of the cell 
membranes. They control the ion fluxes through the cellular membrane playing a 
central role in several cell functions, i.e. the cellular excitability [1]. In the last 
few years, thanks to the structural data provided by X-ray crystallography, it has 
become possible to analyze the channels at atomic level. In particular, the atomic 
structures of several bacterial ion channels selectively permeable to potassium 
ions - KcsA [2], MthK [3], and KvAP [4] - were revealed. The peculiar 
characteristic of potassium channels is the ability to conduct at a rate close to the 
diffusion limit (108 ions/s) keeping a high selectivity (K+ is 104 times more 
permeant than Na+). Since high fluxes need conduction mechanisms without 
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energetic barriers, while selectivity needs a close interaction between ions and 
channel, these characteristics seemed incompatible. The knowledge of the KcsA 
atomic structure, the first potassium channel crystallized, has permitted to solve 
this apparent contradiction by molecular dynamic methods [5]. 
     KcsA is made by four identical subunits, symmetrically placed around the 
channel axis. Each subunit consists of 160 amino acids and is characterized by 
three α helix structures - the outer helix, the pore helix and the inner helix - 
placed like in figure 1. On the extracellular side the conduction pathway is lined 
by the carbonyl oxygens of the amino acid sequence TVGYG, one from each 
subunit. This region, named selectivity filter, is 12 Å long with a mean radius of 
1.4 Å and it is widely conserved among different potassium channels. Below the 
selectivity filter the channel opens in a wide chamber with a mean radius of 6Å 
connected to the intracellular space by a 18 Å long hydrophobic pore. Both the 
chamber and the hydrophobic pore are lined by the four inner helixes. Close to 
the intracellular mouth a bundle between these helixes reduces the hydrophobic 
pore radius near to 0.5 Å, preventing ion fluxes through the channel. Electron 
paramagnetic resonance experiments [6] and structural data from other 
potassium channels [3], suggest that KcsA opening is due to an outward 
movement of the inner helixes, realized by a bending of these helixes at a hinge 
glycine (GLY 99). The conservation of this amino acid among many potassium 
channels suggests a common mechanism for channel gating. 
 
 

 
 

Figure 1: Two subunits of the KcsA channel. S1, S2, S3 and S4 are the four ion 
binding sites in the selectivity filter. 
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     Experimental data [2] and molecular dynamic simulations [5] have revealed 
the presence of four ion binding sites inside the selectivity filter, named 
respectively S1, S2, S3, and S4 (see Fig. 1). The energetically favoured 
configurations have two potassium ions in the filter, separated by a water 
molecule. The rapid switching between the configuration with ions in S1 and S3, 
and the one with ions in S2 and S4, is possible thanks to the presence of a low 
energetic barrier. Ion transport takes place when a third ion enters the pore from 
one side driving out an ion on the opposite side. Molecular dynamics simulations 
have showed that no energy barrier is present between the states involved in the 
conduction mechanism, giving an explanation for the high conduction rate [5]. 
The lack of energetic barriers is due to the presence of the carbonyl oxygens of 
the selectivity filter. These atoms mimic the presence of water hydration 
oxygens, cutting out the energetic cost of dehydration. The conduction 
mechanism works perfectly with potassium ions, but fails with smaller particles, 
like sodium ions. Free energy perturbation simulations have revealed that, inside 
the filter, the substitution of potassium by sodium is energetically expensive, 
with an energetic cost in line with the experimental selectivity of potassium 
channels [5]. 

Molecular dynamic simulation has pointed out the atomic details of conduction 
and selectivity, but is not able to reproduce the ion fluxes through the channels. 
Since electrical current is the main functional characteristic of ion channels, and 
the only one experimentally determinable, simulation of ion fluxes is the only 
way to link structural and functional data. The complexity of the system, due to 
the huge number of atoms, limits the dynamic simulations to the nanosecond 
scale while biological process, like ion conduction, are far slower (millisecond 
scale). A simplified mathematical model of ion conduction is so needed. Since 
most of the complexity in ion channel dynamic simulations lies in the high 
number of water molecule, a continuum description of the solvent is the first step 
to reduce the computational resources. Brownian dynamic simulations are a 
possible approach based on this idea. In a Brownian dynamic simulation only 
ions preserved their discrete nature, the solvent is described by diffusion 
coefficients and stochastic collisions with ions and the effect of the protein by a 
potential energy function. The potential energy function and the diffusion 
coefficients are the basic elements of this method, and to avoid arbitrariness in 
the mathematical model these functions are computed starting from the atomic 
structure of the channel. A Brownian dynamic simulation based on this approach 
was used by Bernechè [7] on KcsA, getting a good accordance with the 
experimental data. 

In this study we present a further simplified approach based on the Poisson, 
Nernst, Planck (PNP) theory of electrodiffusion, which use a continuum 
description of the whole system. The next section describes the theory and the 
numerical algorithm developed to solve the PNP equations. The application of 
the method to the KcsA channel is then described. The paper concludes with a 
brief discussion of the results. 
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2 Theory and method 

2.1 PNP theory 

The PNP electrodiffusion theory describes a steady state condition for a system 
of mobile charges. In membrane channels, the mobile charges are the different 
ion species in solution, which space distributions are described by the 
concentrations Ci(r) (subscript i marks the i-th ion specie; r is the position in the 
space). Assuming the electric field as the only driving force acting on ions, the 
steady state flux of the i-th ion specie has the form: 
 

)()()()()()( rezrCrrCrDrJ iiiiii ψµ ∇−∇−=                  (1)  
 
where Di(r), µi(r), zi are respectively diffusion coefficient, mobility and valence 
of the i-th ion specie, e is the elementary charge and ψ the electrostatic potential. 
The first term, which is proportional to the concentration gradient, is due to 
diffusion processes, while the last is produced by the electric field. Since the 
PNP theory describes a steady state condition, fluxes are time independent, and 
in virtue of the mass conservation law, the divergence of Ji(r) is zero. This gives 
the set of differential equations: 
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where N is the number of ion species, kB the Boltzmann’s constant and T the 
absolute temperature. In (2) the Einstein’s relation between diffusion coefficients 
and ion mobility, µ/D=kBT, was introduced. To complete the mathematical 
model it is necessary to define how electrostatic potential and ion concentrations 
are connected. This relation may be defined by the Poisson’s equation: 
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where ε(r) is the dielectric constant and ρ(r) the charge distribution of the protein 
atoms that differently from ion charge distribution is assumed fixed in the space. 
     In the present study we included in the water solution only two monovalent 
ion species: one positive (i=+) and one negative (i=-). Then, the PNP differential 
equation set (2) and (3) reduced to: 
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     Once solved these equations, as described in the next section, ion 
concentrations and electrostatic potential in the space are obtained. Then, the ion 
fluxes in the channel can be computed by equation (1). 

2.2 Computational method 

The differential equations (4) and (5) were numerically solved on a cubic volume 
formed by 2003 cubic grid elements (the side of the grid element was 0.5 Å). The 
cubic volume was divided in three distinct sub-volumes: the ion channel, the 
membrane and the water solution (see Fig. 2). The position, the radius and the 
partial charge of all the atoms made up the ion channel sub-volume. Channel was 
discretized on the grid by using the discretization algorithm implemented in 
DELPHI v.4, a well-known Poisson-Boltzmann equation solver [8]. The channel 
was placed with its geometric centre in the centre of the cube and with the pore 
axis orthogonal to the upper and lower faces. The extracellular side of the 
channel pointed to the upper face. The height of cube  was chosen double of the 
channel length along the pore axis (z axis). To separate extra- and intra-cellular 
spaces outside the ion channel, a sub-volume surrounding the channel and 
extending between two planes orthogonal to the pore axis was considered. This 
volume simulated the lipid bilayer of the cell membrane. The water solution 
spread all over the volume not occupied by the channel and by the membrane. It 
was characterized by two space-dependent diffusion coefficients, one for each 
ionic specie. A specific dielectric constant was assigned to water solution, 
membrane and channel sub-volumes. 
     The Poisson’s equation (5) was solved in the whole volume, while the mass 
conservation equations (4) were solved in the water solution only. As boundary 
condition for the Poisson’s equation we assigned the electrostatic potential on the 
six faces of cube. The potential was set to 0 on the upper face, whereas the  
membrane potential value (Vm) to be simulated was applied on the lower face. 
On the side faces a linear interpolation between 0 and Vm was used. Two 
different boundary conditions were assigned for the mass conservation 
equations. On the upper and lower faces the boundary conditions were the ion 
concentrations to be simulated. On both faces anion and cation concentrations 
were set equal, to have electrically neutral boundaries. Boundary conditions on 
the side faces and at the separation surface with channel and membrane were: 
 

0=⋅+ nJ  0=⋅− nJ                    (6) 
 

where n is the surface normal vector. In this way no ion flux was allowed 
through these surfaces. 
     Once defined the boundary conditions, the differential equation set was 
solved by an iterative scheme. The electrostatic potential was first computed 
solving the Poisson’s equation with ion concentrations set to zero. This potential 
was used to compute ion concentrations by the solution of mass conservation 
equations, then the new concentrations were used to update the electrostatic 
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potential. This procedure was repeated until a self-consistent solution was found. 
The convergence was tested by the root mean square deviation between two 
successive iterations. All the differential equations were solved as described in 
the Appendix. 

 

 

Figure 2: A 2D slice of the cubic grid. The channel is in black, the membrane 
in grey and the water solution in white. 

3 Application to the KcsA channel 

3.1 KcsA structure 

The three dimensional atomic coordinates of the KcsA channel were taken from 
the crystallographic structure determined at 2 Å resolution by Y. Zhou et al. [9] 
(file 1K4C.pdb of the Protein Data Bank [10]). The atomic coordinates of the 
first 22 amino acids at the N terminal and of the last 45 at the C terminal were 
not experimentally determined. Since both C and N terminal are located in the 
cytoplasm, far from the conduction pathway, these amino acids are not crucial 
for the present study and therefore, they were not included in the channel model. 
Side chains with missing atoms were completed using ideal internal coordinate 
from the AMBER force field [11]. AMBER force field was used to define 
atomic radii and partial charges too. 
     The experimentally determined structure of KcsA corresponds to a closed 
state of the channel. To compute correctly ion fluxes it was necessary to use an 
open channel structure. Closing of KcsA is due to a bundle between the four 
inner helixes at the intracellular channel mouth [3, 6]. A glycine hinge allows the 
inner helix bending and the consequent channel opening. This mechanism was 
suggested by the experimental structure of MthK (file 1LNQ.pdb of the Protein 
Data Bank). MthK is potassium channel from the methanothermbacter 
thermautotrophic that, differently from KcsA, was crystallized in an open state. 
Indeed, MthK inner helixes are bent and the selectivity filter is connected to the 
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intracellulare space by a wide pore (minimum radius 12 Å). To compute a 
structure of KcsA in an open state we minimized the distance between the inner 
helix of KcsA and MthK by a rigid rotation of the intracellular side of the KcsA 
inner helixes around the glycine hinges. 
     KcsA channel comes into contact with the membrane lipid bilayer by the four 
outer helixes. These helixes have a hydrophobic segment between the amino 
acids TRP 113 (z=14.5 Å) and TRP 87 (z=-15.5 Å). We used the position of 
these amino acids to define the thickness of the membrane in our model. 

3.2 Results 

The relative dielectric constant was set to 80 in the water solution and to 2 in the 
channel and the membrane. Small changes around these values were tested but 
they did not affect the results significantly. The diffusion coefficients were set to 
the experimental value, respectively of potassium and chloride (DK+=1.96*10-9 
m2/s, DCl-=2.03*10-9 m2/s). Setting the membrane potential to 25 mV and both 
the extracellular and intracellular ion concentrations to 100 mM, the computed 
current is 4 times the experimental data [12]. The approximation gets worst at 
higher ion concentration and membrane potential (Fig. 3). 
     A possible approach to reproduce the experimental data is to use the diffusion 
coefficients as fitting parameters. Computed currents reproduce quite well the 
experimental data with a reduction of both the diffusion coefficients to 25%. 
However, a similar reduction of the diffusion coefficients in the whole water 
solution is not justifiable. Otherwise, inside the channel, diffusion processes take 
place differently and it is reasonable to use different values for the diffusion 
coefficients. We divided the channel in two regions: the hydrophobic pore 
(0<z<-24) and the selectivity filter (14<z<0). The diffusion coefficients were 
reduced only in these two regions according to the value computed by molecular 
dynamic simulations (10% of the experimental value in the selectivity filter, 50% 
in the hydrophobic pore) [5]. Using these diffusion coefficients the accordance 
with the experimental data improves (see Fig. 3). 

 

 

Figure 3: Current-voltage (A) and current-concentration (B) characteristics. 
Experimental data (○), diffusion coefficients set to the experimental 
values (□), reduced diffusion coefficients (∆). 
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4 Discussion 

In this paper we have attempted to relate structure and function of ion channels, 
making use of the KcsA experimental data. To this end we developed a 
numerical solver of the PNP equations. In ion channel simulation studies, an 
approach based on the PNP electrodiffusion theory is complementary to an 
approach based on molecular dynamics. The last can reveal the atomic details 
about ion channel functioning, while the former, giving up the atomic detail, 
provide a way to compute ion currents. To simplify the mathematical model of 
ion conduction, the PNP theory describes the ion distribution with a continuum 
function. Despite this simplifying assumption the computed currents are in good 
accordance with the experimental data. It is important to highlight that the 
accordance between simulated and experimental data was obtained with 
diffusion coefficient values matching the ones computed by molecular dynamics 
simulations. Therefore these coefficients must not to be interpreted as fitting 
parameters. Instead, they connect the microscopic description provided by 
molecular dynamics to the macroscopic of the PNP theory. 
     The accordance with the experimental data is good especially with ion 
concentrations and membrane potential in the physiological range. At higher 
values an overestimation of the current was obtained, probably due to saturation 
effects not introduced in the model. Even if an improvement of the mathematical 
model in this direction is desirable, the present approximation provides a good 
tool to connect structure and function of ion channels. 

Appendix: numerical method 

The numerical procedure used to solve the mass conservation equations (4) is 
presented here. For sake of simplicity we will refer to a bidimensional case, 
generalization to the three dimensional case is immediate. The same numerical 
procedure was used to solve the Poisson’s equation (5). The ion flux in the x 
direction between the grid elements (i-1,j) and (i,j) was expressed as: 
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that is the lattice version of equation (1) (h is the grid step). The ion fluxes x

iJ 1+  

- in the x direction between the elements (i,j) and (i+1,j) -, y
jJ 1−  and y

jJ 1+   were 
expressed consistently. According to the mass conservation law, net steady state 
flux through any grid element is zero, that is: 
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Replacing in this equation the fluxes expressed as in (A1) it is possible to write: 
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where k is an index that rounds over the four surrounding grid elements, k=(i-
1,j), (i+1,j), (i,j-1), (i,j+1). Equation (A3) was used in an iterative scheme based 
on the successive over relaxation techniques [14] to find the solution of the mass 
conservation equation. At the first step ion concentration in each grid element is 
set randomly, these concentrations are then updated, according to: 
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where n

jiC ,  and 1
,
−n
jiC  are respectively the concentration computed at the step n 

and n-1, and jiC ,  is obtained by (A3). Setting correctly the weight w, the 
number of iteration to reach the solutions drops appreciably. To test the 
convergence to solution the root mean square distance (RMSD) between two 
successive iterations is used, the procedure is stopped when RMSD falls below 
10-3. 
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