7,381 research outputs found

    Quantum criticality in a generalized Dicke model

    Get PDF
    We employ a generalized Dicke model to study theoretically the quantum criticality of an extended two-level atomic ensemble interacting with a single-mode quantized light field. Effective Hamiltonians are derived and diagonalized to investigate numerically their eigenfrequencies for different quantum phases in the system. Based on the analysis of the eigenfrequencies, an intriguing quantum-phase transition from a normal phase to a superradiant phase is revealed clearly, which is quite different from that observed with a standard Dicke model.Comment: 6 pages, 3 figure

    Exploring multipartite quantum correlations with the square of quantum discord

    Get PDF
    We explore the quantum correlation distribution in multipartite quantum states based on the square of quantum discord (SQD). For tripartite quantum systems, we derive the necessary and sufficient condition for the SQD to satisfy the monogamy relation. Particularly, we prove that the SQD is monogamous for three-qubit pure states, based on which a genuine tripartite quantum correlation measure is introduced. In addition, we also address the quantum correlation distributions in four-qubit pure states. As an example, we investigate multipartite quantum correlations in the dynamical evolution of multipartite cavity-reservoir systems.Comment: 8 pages, 5 figure

    Necessity of integral formalism

    Full text link
    To describe the physical reality, there are two ways of constructing the dynamical equation of field, differential formalism and integral formalism. The importance of this fact is firstly emphasized by Yang in case of gauge field [Phys. Rev. Lett. 33 (1974) 445], where the fact has given rise to a deeper understanding for Aharonov-Bohm phase and magnetic monopole [Phys. Rev. D. 12 (1975) 3845]. In this paper we shall point out that such a fact also holds in general wave function of matter, it may give rise to a deeper understanding for Berry phase. Most importantly, we shall prove a point that, for general wave function of matter, in the adiabatic limit, there is an intrinsic difference between its integral formalism and differential formalism. It is neglect of this difference that leads to an inconsistency of quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 (2004) 160408]. It has been widely accepted that there is no physical difference of using differential operator or integral operator to construct the dynamical equation of field. Nevertheless, our study shows that the Schrodinger differential equation (i.e., differential formalism for wave function) shall lead to vanishing Berry phase and that the Schrodinger integral equation (i.e., integral formalism for wave function), in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, we reach a conclusion: There are two ways of describing physical reality, differential formalism and integral formalism; but the integral formalism is a unique way of complete description.Comment: 13Page; Schrodinger differential equation shall lead to vanishing Berry phas

    Neutrino-Neutrino Scattering and Matter-Enhanced Neutrino Flavor Transformation in Supernovae

    Get PDF
    We examine matter-enhanced neutrino flavor transformation (ντ(μ)νe\nu_{\tau(\mu)}\rightleftharpoons\nu_e) in the region above the neutrino sphere in Type II supernovae. Our treatment explicitly includes contributions to the neutrino-propagation Hamiltonian from neutrino-neutrino forward scattering. A proper inclusion of these contributions shows that they have a completely negligible effect on the range of νe\nu_e-ντ(μ)\nu_{\tau(\mu)} vacuum mass-squared difference, δm2\delta m^2, and vacuum mixing angle, θ\theta, or equivalently sin22θ\sin^22\theta, required for enhanced supernova shock re-heating. When neutrino background effects are included, we find that rr-process nucleosynthesis from neutrino-heated supernova ejecta remains a sensitive probe of the mixing between a light νe\nu_e and a ντ(μ)\nu_{\tau(\mu)} with a cosmologically significant mass. Neutrino-neutrino scattering contributions are found to have a generally small effect on the (δm2, sin22θ)(\delta m^2,\ \sin^22\theta) parameter region probed by rr-process nucleosynthesis. We point out that the nonlinear effects of the neutrino background extend the range of sensitivity of rr-process nucleosynthesis to smaller values of δm2\delta m^2.Comment: 38 pages, tex, DOE/ER/40561-150-INT94-00-6

    Recurrence-based time series analysis by means of complex network methods

    Full text link
    Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related with the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.Comment: To be published in International Journal of Bifurcation and Chaos (2011
    corecore